PARISHRAM PUBLICATIONS

Std.: X (English)
Mathematics Part - II
Parishram Academy
Date: 14-Dec-2019
Time: 2 hrs

Note:-

Q. 1 A) Solve Multiple choice questions.

1) $(\cos \theta+\sin \theta)^{2}+(\cos \theta-\sin \theta)^{2}$ is equal to
a. -2
b. 0
c. 1
d. 2

Ans. Option d.
2) A circle touches all sides of a parallelogram. So the parallelogram must be a
a. rectangle
b. rhombus
c. square
d. trapezium

Ans. Option b.
3) Find the ratio of the volumes of a cylinder and a cone having equal radius and equal height.
a. 1:2
b. 2 : 1
c. $1: 3$
d. 3 : 1

Ans. Option d.
4) If in two triangles $A B C$ and $P Q R$,
$\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}}$, then
a. $\triangle P Q R \sim \triangle C A B$
B. $\triangle P Q R \sim \triangle A B C$
C. $\triangle C B A \sim \triangle P Q R$
D. $B C A \sim \triangle P Q R$

Ans. Option a.
B) Solve the following questions.

1) Identify, with reason, if the following is Pythagorean triplet. 4, 9, 12

Ans. (4, 9, 12)

$$
\begin{aligned}
& 12^{2}=144 \\
& =97
\end{aligned}
$$

$\therefore(4,9,12)$ is not a Pythagorean triplet.
2) In the given figure, $C B \perp A B$, $D A \perp A B$. If $B C=4, A D=8$ then $\frac{A(\triangle A B C)}{A(\triangle A D B)}$ find.

Ans. $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADB})}=\frac{\mathrm{BC}}{\mathrm{AD}} \ldots$ (Triangles with same base)
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADB})}=\frac{4}{8}$
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADB})}=\frac{1}{2}$
3) Area of a sector of a circle of radius 15 cm is $30 \mathrm{~cm}^{2}$. Find the length of the arc of the sector.

Ans. Given : Area of sector $=30 \mathrm{~cm}^{2}$ Radius of circle $=15 \mathrm{~cm}$
To find : length of arc
Solution :
area of sector $=\frac{\text { Length of arc } \times \text { radius of circles }}{2}$
$\therefore \quad 30=\frac{\text { length of the arc } \times 15}{2}$

$$
\frac{30 \times 2}{15}
$$

$$
=4 \mathrm{~cm}
$$

Length of the arc is 4 cm
4) Prove the following
$\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$
Ans. $\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$
LHS $=\tan ^{4} \theta+\tan ^{2} \theta$
$=\tan ^{2} \theta\left(\tan ^{2} \theta+1\right)$
$=\tan ^{2} \theta \cdot \sec ^{2} \theta \quad \ldots\left[1+\tan ^{2} \theta=\sec ^{2} \theta\right]$
$=\left(\sec ^{2} \theta-1\right) \sec ^{2} \theta$
$=\sec ^{4} \theta-\sec ^{2} \theta$
$\therefore \quad \mathrm{LHS}=\mathrm{RHS}$
Q. 2 A) Complete the following Activities. (Any two)

1) A side of an isosceles right angled triangle is x. Find its hypotenuse.

Ans. A side of an isosceles right angled triangle is x. Find its hypotenuse.

In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$
and $P Q=Q R=x$

$$
\begin{aligned}
\therefore \quad \mathrm{PR}^{2} & =\mathrm{PQ}^{2}+\mathrm{QR}^{2} \quad \ldots[\text { Pythagoras theorem }] \\
& =\mathrm{x}^{2}+\mathrm{x}^{2}
\end{aligned}
$$

$\therefore \quad P R^{2}=2 x^{2}$
$\therefore \quad P R=\sqrt{2} x$ units
... [Taking square root]
$\therefore \quad$ The length of hypotenuse is $\sqrt{2} x$ units.
2) If $\sin \theta=\frac{11}{61}$ then find the value of $\cos \theta$ using identity.

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \ldots[\text { Trigonometric identity] }
$$

$\therefore \cos ^{2} \theta=$ \qquad
$=1$ -
$=1-\frac{121}{3721}$
$=$ \qquad
$\therefore \quad \cos ^{2} \theta=$ \qquad
$\therefore \quad \cos \theta=$
... [Taking square root]
Ans. If $\sin \theta=\frac{11}{61}$ then find the value of $\cos \theta$ using identity.

$$
\begin{aligned}
& \begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \begin{aligned}
\therefore \quad \cos ^{2} \theta & =1-\sin ^{2} \theta \\
& =1-\left(\frac{11}{61}\right)^{2}
\end{aligned} \\
&=1-\frac{121}{3721} \\
&=\frac{3721-121}{3721}
\end{aligned} \\
& \begin{aligned}
\therefore \quad \cos ^{2} \theta & =\frac{3600}{3721} \\
\therefore \quad \cos \theta & =\frac{60}{61} \quad \ldots \text { [Takigonometric identity] } \\
\therefore \quad &
\end{aligned}
\end{aligned}
$$

3)

In chord EF || chord GH. Prove that, chord EG \cong chord FH.
Fill in the blanks and write the proof.

```
Proof: Draw seg GF.
\angleFFG= }\angle\textrm{FGH
\angleEFG = ..............
    .. inscribed angle theorem (II)
FFGH =
```

\qquad

```
        ... inscribed angle theorem (III)
```

$\therefore \quad \mathrm{m}(\operatorname{arc} E G)=$ \qquad from (I), (II), (III).
$\therefore \quad$ chord $\mathrm{EG} \cong$ chord FH \qquad
Ans.

In chord EF || chord GH. Prove that, chord EG \cong chord FH.
Fill in the blanks and write the proof.
Proof : Draw seg GF.
$\angle \mathrm{EFG}=\angle \mathrm{FGH} \quad \ldots$ [alternate angles] (I)
$\angle \mathrm{EFG}=\frac{1}{2} \times \mathrm{m}(\operatorname{arc} \mathrm{EG}) \quad \ldots$ inscribed angle theorem (II)
$\angle \mathrm{FGH}=\frac{1}{2} \times \mathrm{m}(\operatorname{arc} \mathrm{FH}) \quad \ldots$ inscribed angle theorem (III)
$\therefore \quad m(\operatorname{arc} E G)=m(\operatorname{arc} F H) \quad \ldots$ from (I), (II), (III).
\therefore chord $\mathrm{EG} \cong$ chord $\mathrm{FH} \quad .$. [congruent arcs of congruent chords]
B) Solve the following questions. (Any four)

1) The diameter of a circle is 10 cm . Find the length of the arc, when the corresponding central angle is $144^{\circ}(\pi=3.14)$.

Ans. Given :Diameter $=10 \mathrm{~cm}$

$$
\begin{array}{ll}
& \text { radius }=\frac{\text { diameter }}{2}=\frac{10}{2}=5 \\
\therefore \quad & \text { radius }(r)=5 \mathrm{~cm} \\
& \text { Central angle }(\theta)=144 \\
& \text { length of arc }=\frac{\theta}{360} \times 2 \pi r \\
& \text { length of arc }=\frac{144}{360} \times 2 \times 3.14 \times 5 \\
& \text { length of arc }=\frac{2}{5} \times 2 \times 3.14 \times 5 \\
& \text { length of arc }=12.56 \\
\therefore \quad & \text { length of arc is } 12.56
\end{array}
$$

2)

In the figure circles with centres C and D touch internally at point E. D lies on the inner circle. Chord $E B$ of the outer circle intersects inner circle at point A. Prove that, seg $E A \cong \operatorname{seg} A B$.

Ans. Proof :
Draw seg ED and seg DA.
E-C-D
... (By theorem of touching circles)
$\therefore \quad$ seg ED is the diameter of the smaller circle.

For larger circle, seg
DA \perp chord EB
$\therefore \quad E A=A B$
$\therefore \quad \operatorname{seg} \mathrm{EA} \cong \boldsymbol{\operatorname { s e g }} \mathbf{A B}$
3) Draw a circle of radius 3.6. Draw a tangent to the circle at any point on it without using centre.

Ans.

Line BN is the required tangent.
4) Find the length of altitude of an equilateral triangle having side 2 a.

Ans.

$\triangle A B C$ is an equilateral triangle having each side $2 a$
units.
seg $A D \perp$ side $B C$.
$\therefore \quad \mathrm{BD}=\frac{1}{2} \mathrm{BC}$

$$
=\frac{1}{2} \times 2 a
$$

... [In an equilateral triangle, altitude is also median]
... [Pythagoras theorem]
$\therefore \quad(2 a)^{2}=A D^{2}+(a)^{2}$
$\therefore \quad 4 a^{2}-a^{2}=A D^{2}$
$\therefore \quad A D^{2}=3 a^{2}$
$\therefore \quad A D=\sqrt{3}$ a units
$\therefore \quad$ Length of altitude is $\sqrt{3}$ a units.
5) Find the centroids of the triangles whose vertices are given below.

$$
(3,-5),(4,3),(11,-4)
$$

Ans. Let $\mathrm{A}(3,-5) \equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$,
B $(4,3) \equiv\left(x_{2}, y_{2}\right)$ and
C $(11,-4) \equiv\left(x_{3}, y_{3}\right)$
Let $\quad G \equiv(x, y)$ be the centroid of $\triangle A B C$.
By centroid formula,

$$
\begin{aligned}
x & =\frac{x_{1}+x_{2}+x_{3}}{3} & , & y=\frac{y_{1}+y_{2}+y_{3}}{3} \\
& =\frac{3+4+11}{3} & & =\frac{-5+3-4}{3} \\
& =\frac{18}{3} & & =\frac{-6}{3} \\
& =6 & & =-2
\end{aligned}
$$

$\therefore \quad$ The coordinates of the centroid of $\triangle \mathrm{ABC}$ are $(6,-2)$.

Q. 3 A) Complete the following activity. (Any one)

1) In a $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$. If $A D=2.4 \mathrm{~cm}$, $A E=3.2 \mathrm{~cm}, D E=2 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$, find the $B D$ and $C E$.

In $\triangle A B C$
$\because \quad D E \| B C$
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{AB}}=$ \qquad

$$
\frac{2.4}{\mathrm{AB}}=\frac{3.2}{\mathrm{AC}}=\frac{2}{5}
$$

$$
\frac{2.4}{\mathrm{AB}}=\frac{2}{5}
$$

$$
\mathrm{AB}=
$$

\qquad

$$
=6 \mathrm{~cm}
$$

$$
\frac{3.2}{\mathrm{AC}}=\frac{2}{5}
$$

$$
\text { and } A C=\ldots=8 \mathrm{~cm}
$$

$\therefore \quad B D=$ \qquad

$$
=\overline{6-2.4}
$$

$$
=
$$

\qquad

$$
\begin{aligned}
\text { andCE } & =\mathrm{AC}-\mathrm{AE} \\
& =8-3.2 \\
& =
\end{aligned}
$$

Ans. In a $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$. If $A D=2.4 \mathrm{~cm}$, $A E=3.2 \mathrm{~cm}, D E=2 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$, find the $B D$ and $C E$.

In $\triangle \mathrm{ABC}$
$\because \quad D E \| B C$
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{BC}}$
$\frac{2.4}{\mathrm{AB}}=\frac{3.2}{\mathrm{AC}}=\frac{2}{5}$
$\frac{2.4}{\mathrm{AB}}=\frac{2}{5}$
$\mathrm{AB}=\frac{2.4 \times 5}{2}$
$=6 \mathrm{~cm}$
$\frac{3.2}{\mathrm{AC}}=\frac{2}{5}$
and $A C=\frac{3.2 \times 5}{2}=8 \mathrm{~cm}$
$\therefore \quad B D=A B-A D$
$=6-2.4$
$=3.6 \mathrm{~cm}$
andCE $=A C-A E$
$=8-3.2$
$=4.8 \mathrm{~cm}$
2) In the circles with centres A and B touch each other at E. Line I is a common tangent which touches the circles at C and D respectively. Find the length of seg $C D$ if the radii of the circles are $4 \mathrm{~cm}, 6 \mathrm{~cm}$.

Construction: Draw seg AF \perp seg BD
$\therefore \quad \square \mathrm{AFDC}$ is a rectangle.
A-E-B
$\therefore \quad=A B$
$4+6=A B$
$\mathrm{AB}=10 \mathrm{~cm}$
Now, in $\triangle \mathrm{AFB}, \angle \mathrm{AFB}=90^{\circ} \ldots$... [Construction]
$A B^{2}=$ \qquad [Pythagoras Theorem]
$\therefore \quad 10^{2}=A F^{2}+2^{2}$
$B F=$ \qquad

$$
\begin{array}{ll}
& A F^{2}=96 \\
\therefore \quad & A F= \\
\therefore \quad & B u t, C D=A F \\
\therefore \quad
\end{array}
$$

Ans. In the circles with centres A and B touch each other at E. Line I is a common tangent which touches the circles at C and D respectively. Find the length of seg $C D$ if the radii of the circles are $4 \mathrm{~cm}, 6 \mathrm{~cm}$.

Construction: Draw seg AF \perp seg BD

$\therefore \quad \square \mathrm{AFDC}$ is a
.. rectangle.
A-E-B
... [If two circles are touching circles then their point of contact lies on the line joining their centres]
$\therefore \quad A E+E B=A B \quad \ldots[A-E-B]$
$4+6=A B$
$\mathrm{AB}=10 \mathrm{~cm}$
Now,
in $\triangle \mathrm{AFB}, \angle \mathrm{AFB}=90^{\circ} \cdots$. [Construction]
$A B^{2}=A F^{2}+\mathrm{BF}^{2} \quad \ldots$. [Pythagoras Theorem]
$\therefore \quad 10^{2}=A F^{2}+2^{2} \quad B F=B D-D F$
$A F^{2}=96$
$\therefore \quad A F=4 \sqrt{6}$
But, CD = AF
$\therefore \quad C D=4 \sqrt{6}$

B) Solve the following questions. (Any two)

1) Prove the following.
$\frac{\sin A+\cos A}{\sin A-\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A}=\frac{2}{\sin ^{2} A-\cos ^{2} A}$
Ans. $\frac{\sin A+\cos A}{\sin A-\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A}=\frac{2}{\sin ^{2} A-\cos ^{2} A}=\frac{2}{1-2 \cos ^{2} A}=\frac{2 \sec ^{2} A}{\tan ^{2} A-1}$
L.H.S. $=\frac{\sin A+\cos A}{\sin A-\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A}$

$$
\begin{aligned}
& =\frac{(\sin \mathrm{A}+\cos \mathrm{A})^{2}+(\sin \mathrm{A}-\cos \mathrm{A})^{2}}{\sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}} \\
& =\frac{2\left(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right)}{\sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}} \\
& =\frac{2 \times 1}{\sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}}=\frac{2}{\sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}} \\
& =\text { R.H.S. }
\end{aligned}
$$

In adjoining figure in $\triangle A B C$, point D is on side $A C$. If $A C=16, D C=9$ and $B P \perp A C$, then then find the following ratios.
i. $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}$
ii. $\frac{\mathrm{A}(\triangle \mathrm{BDC})}{\mathrm{A}(\triangle \mathrm{ABC})}$
iii. $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{BDC})}$

Ans. In $\triangle A B C$ point P and D are on side $A C$,
hence B is a common vertex of $\triangle A B D, \triangle B D C, \triangle A B C$ and $\triangle A P B$ and their sides $A D, D C, A C$ and $A P$ are collinear.
Heights of all the triangles are equal.
Hence, areas of these triangles are proportional to their bases $A C=16, D C=$ 9
$\therefore A D=16-9=7$
$\therefore \frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{AD}}{\mathrm{AC}}=\frac{7}{16}$
$\frac{\mathrm{A}(\triangle \mathrm{BDC})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{DC}}{\mathrm{AC}}=\frac{9}{16}$
$\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{BDC})}=\frac{\mathrm{AD}}{\mathrm{DC}}=\frac{7}{9}$
... triangles having equal heights
... triangles having equal heights
... triangles having equal heights
3) Draw a circle with centre P and radius 3.4 cm . Take point Q at a distance 5.5 cm from the centre. Construct tangents to the circle from point Q .

Ans.

Line QA and line QB are required tangents.
4) In figure, chord MN and chord $R S$ intersect at point D .
(1) If $R D=15, D S=4, M D=8$ find $D N$
(2) If $R S=18, M D=9, D N=8$ find $D S$

Ans. Case (i) :
Given: $R D=15, D S=4$
MD $=8$
To find: $\quad \mathrm{DN}=$?
Solution:

$$
\begin{aligned}
& M D \times D S=R D \times D S \quad \ldots\{\text { Property on intersecting chords }\} \\
& 8 \times D N=4 \times 15 \\
\therefore \quad & D N=\frac{15}{2} \\
& D N=7.5 \text { units }
\end{aligned}
$$

Case (ii) :
Given: $R S=18, M D=9, D N=8$
To find: DS
Solution :

$$
\text { Let } \begin{aligned}
& D S=x \\
& R D+D S=R S \\
& R D=R S-D S \\
& R D=18-x
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& M D \times D N=R D \times D S \quad \ldots\{\text { By property of intersecting chords\} } \\
& 8 \times D N=(18 \times x) \times x \\
& 8 \times 9=(18-x) \times x \\
\therefore \quad & 18 x-x^{2}=72 \\
& x^{2}-18 x+72=0 \\
& x^{2}-12 x-6 x+72=0 \\
& x(x-12)-6(x-12) \\
& (x-6)(x-12) \\
\therefore \quad & x=6 \quad \text { Or } \quad x=12 \\
\therefore \quad & \text { DS }=\mathbf{6} \text { units } \quad \text { Or } \\
& \text { DS }=12 \text { units } \quad
\end{array}
$$

Q. 4 Solve the following questions. (Any two)

1) Find the equation of the line passing through the point of intersection of the line $4 x+3 y+2=0$ and $6 x+$ $5 y+6=0$ and the point of intersection of the lines $4 x-3 y-17=0$ and $2 x+3 y+5=0$.

Ans. To find the points of intersections of the given pairs of lines, we have to solve the equations.

$$
\begin{array}{lll}
4 x+3 y+2=0 & \therefore & 4 x+3 y=-2 \\
6 x+5 y+6=0 & \therefore \quad 6 x+5 y=-6
\end{array}
$$

Multiplying equation (1) by 5 and equation (2) by 3 .
$-18 x+15 y=-182 x=8 \ldots$ (3)... (4)
... [Subtracting eq. (4) from
eq. (3)]
$\therefore \quad \mathrm{x}=4$

Substituting $x=4$ in equation (1),
$4(4)+3 y=-2$
$\therefore \quad 16+3 y=-2 \quad \therefore \quad 3 y=-2-16$
$\therefore \quad 3 y=-18 \quad \therefore \quad y=-6$
the coordinates of the point of intersection of the first pair of lines are (4, -
6)

Let $P(4,-6) \equiv\left(x_{1}, y_{1}\right)$
For the second pair of lines,
$4 \mathrm{x}-3 \mathrm{y}-17=0$
$\therefore \quad 4 \mathrm{x}-3 \mathrm{y}=17$
$2 x+3 y+5=0$
$\therefore \quad 2 x+3 y=-5$

Adding equations (i) and (ii),
$6 x=12 \quad \therefore \quad x=2$
Substituting $x=2$ in equation (ii),
$2(2)+3 y=-5$
$\therefore 4+3 y=-5 \quad \therefore \quad 3 y=-5-4$
$\therefore \quad 3 \mathrm{y}=-9 \quad \therefore \quad \mathrm{y}=-3$
the coordinates of the point of intersection of the second pair of lines are
(2, - 3).
Let $\mathrm{Q}(2,-3) \equiv\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
The equation of a line in two-point form is
$x-x 1 x 1-x 2=y-y 1 y 1-y 2$
\therefore the equation of line $P Q$ is
$x-44-2=y-(-6)-6-(-3)$
... [From (a) and (b)]
$\therefore \quad \mathrm{x}-42=\mathrm{y}-(-6)-6+3 \quad \therefore \quad \mathrm{x}-42=\mathrm{y}+6-3$
$\therefore \quad-3(x-4)=2(y+6)$
$\therefore \quad-3 \mathrm{x}+12=2 \mathrm{y}+12$
$\therefore \quad-3 x-2 y=12-12 \quad \therefore \quad-3 x-2 y=0$
i.e. $3 x+2 y=0$

The equation of the required line is $3 x+2 y=0$
2)

A cylinder and a cone have equal bases. The height of the cylinder is 3 cm and the area of its base is $100 \mathrm{~cm}^{2}$. The cone is placed upon the cylinder. Volume of the solid figure so formed is $500 \mathrm{~cm}^{3}$. Find the total height of the figure.

Ans. Given : radius of cylinder $=$ radius of cone $=r$
height of cylinder $\quad=h_{\text {cy }} \quad=3 \mathrm{~cm}$

Area of base $\quad=100 \mathrm{~cm}^{2}$
Volume of solid $\quad=500 \mathrm{~cm}^{3}$

To find : Total height of figure
Solution : Volume of cylinder $=\pi r 2 h$
$=$ Area of base \times height of cylinder
$=100 \times 3$
Volume of cylinder $\quad=300 \mathrm{~cm}^{3}$
Total volume $\quad=$ Volume of cone + Volume of cylinder
\therefore Volume of cone $=$ Volume of solid - Volume of cylinder
= 500-300
.. [given and (1)]
Volume of cone
$=200 \mathrm{~cm}^{3}$
By formula of volume of cone
$13 \times \pi \times r 2 \times h=200$
$\therefore \quad 13 \times$ Area of base $\times \mathrm{h}=200$
$\therefore \quad 13 \times 100 \times h=200$
$\therefore \quad$ Total height $=9 \mathrm{~cm}$
Total height of solid is 9 cm .
3) Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Ans.

$\square A B C D$ is a prallelogram. Diagonals AC and BD intersect each other at point E .
To prove:
$A C^{2}+B D^{2}=A B^{2}+B C^{2}+C D^{2}+A D^{2}$
proof:
i. $\square A B C D$ is a parallelogram
... [given]
$\therefore \quad \mathrm{AE}=\mathrm{EC}$ and $\mathrm{BE}=\mathrm{DE}$
ii. $A B=C D$ and $B C=A D$
iii.In $\triangle A B C$, seg $B E$ is the median

$$
\begin{aligned}
\therefore \quad A B^{2}+B C^{2} & =2 B^{2}+2 A E^{2} \\
\text { iv. } \therefore \quad A B^{2}+B C^{2} & =212 B D 2+212 A C 2 \\
& =2 \times 14 B D^{2}+2 \times 14 C^{2} \\
& =12 B D^{2}+12 A C^{2}
\end{aligned}
$$

... [Diagonals of parallelogram bisect each other]
... [Opposite sides of parallelogram are equal]
... [From (1)]
... [Apollonius theorem]
$\therefore \quad A B^{2}+B C^{2}=12\left(B D^{2}+A C^{2}\right)$
$\therefore \quad 2\left(A B^{2}+B C^{2}\right)=B D^{2}+A C^{2}$
... [Multiplying both side by
$\therefore \quad 2 A B^{2}+2 B^{2}=B D^{2}+A C^{2}$
v. $A B^{2}+A B^{2}+B C^{2}+B C^{2}=B D^{2}+A C^{2}$
... [From (4)]
$\therefore \quad A B^{2}+C D^{2}+B C^{2}+A D^{2}=B D^{2}+A C^{2}$
... [From (2)]
$\therefore \quad A C^{2}+B D^{2}=A B^{2}+B C^{2}+C D^{2}+A D^{2}$

1) A building has 8 right cylindrical pillars whose cross sectional diameter is 1 m and whose height is 4.2 m . Find the expenditure to paint these pillars at the rate of Rs. 24 per m^{2}.

Ans. Given: For the cylindrical pillars:
diameter $=1 \mathrm{~m}$
radius $(r)=$ diameter $2=12 m$
height $(\mathrm{h})=4.2 \mathrm{~m}$
rate of painting $=$ Rs. $24 / \mathrm{m}^{2}$
To find:Cost of painting the pillars
Curved surface area of each cylindrical pillar
$=2 \pi \mathrm{rh}$
$=2 \times 227 \times 12 \times 4.2$
$=13.2 \mathrm{~m}^{2}$
Area of one pillar to be painted $=13.2 \mathrm{~m}^{2}$
Total area to be painted
$=$ Number of pillars \times curved surface area each pillar
$=8 \times 13.2$
Total area to be painted $=105.6 \mathrm{~m}^{2}$
Rate of painting = Rs $24 / \mathrm{m}^{2}$
Cost of painting
$=$ Total area to be painted \times rate of painting
$=105.6 \times 24=$ Rs 2534.40
$\therefore \quad$ The expenditure to paint the pillars Rs. 2534.40.
2) Find the coordinates of point P if P divides the line segment joining the points.
$A(-1,7)$ and $B(4,-3)$ in the ratio $2: 3$.
Ans. Let $\mathrm{A}(-1,7) \equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$,
B (4, - 3) $\equiv\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and
$\mathrm{P} \equiv\left(\mathrm{x}_{1}, \mathrm{y}\right)$
Herex $_{1}=-1, \mathrm{y}_{1}=7, \mathrm{x}_{2}=4$,
$y_{2}=-3, m=2$ and $n=3$
By section formula
$x=m x 2+n x 1 m+n \quad, \quad y=m y 2+n y 1 m+n$
$=2(4)+3(-1) 2+3=2(-3)+3(7) 2+3$
$=8-35=-6+215$
$=55 \quad=155$
$\therefore \quad \mathrm{x}=1 \quad \therefore \quad \mathrm{y}=3$
$\therefore \quad$ The coordinates of point P are $(1,3)$.

