PARISHRAM PUBLICATIONS				
Std.: X (English)	Mathematics Part - II	Marks: 40		
Date: 14-Dec-2019	Parishram Academy	Time: 2 hrs		
	Chapter: All			

Note:-

1)

Q.1 A) Solve Multiple choice questions.

In the given figure, AB is a diameter of the circle. If AC = BC, then \angle CAB is equal to a. 30⁰ b. 60⁰ c. 90⁰ d. 45⁰

Ans. Option d.

Ans. Option a.

 A person is standing at distance of 40 m from building looking at its top at an angle of elevation 45°. Find height of church.

a. 45m b. $\frac{40}{\sqrt{2}}$ m c. $\frac{40}{\sqrt{2}}$ d. 40m

Ans. Option d.

Find the volume of cube having length of side 6.
 a. 36 cm³
 b. 216 cm³
 c. 108 cm³
 d. 27 cm³

Ans. Option b.

B) Solve the following questions.

1) In \triangle PQR, seg RS bisects \angle R. If PR = 15, RQ = 20, PS = 12 then find SQ.

- **Ans.** In \triangle PRQ, seg RS bisects \angle R.
 - $\frac{PR}{RQ} = \frac{PS}{SQ} \qquad ... \text{ (Angle bisector property)}$ $\frac{15}{20} = \frac{12}{SQ}$

(4)

(4)

 $SQ = \frac{12 \times 20}{15}$ $\therefore SQ = 16$

- 2) Radius of a circle is 10 cm. Area of a sector is 100 cm². Find the area of its corresponding major sector. $(\pi = 3.14)$.
- Ans. Area of a major sector = Area of circle Area of a minor sector

$$=\pi r^{2} - 100$$

=(3.14×10×10 - 100)
=314 - 100
=214 cm²

Area of major sector = 214 cm^2

3) Find the slopes of the lines passing through the given points. T(0, -3), S(0, 4)

Ans. Let $T \equiv (0, -3) \equiv (x_1, y_1), S \equiv (0, 4) \equiv (x_2, y_2)$ Slope of line $TS = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{4 - (-3)}{0 - 0}$ $= \frac{7}{0}$

- \therefore Slope of line TS = not defined
- 4) Find the length of the hypotenuse of a square whose side is 16 cm.

Ans. ABCD is a square.

In right angled triangle $\triangle ABC$,

 $AC^2 = AB^2 + BC^2$... (by Pythagoras theorem)

 \therefore AC² = 16² + 16²

$$\therefore$$
 AC² = 256 + 256

:.
$$AC^2 = 512$$

$$\therefore$$
 AC = $16\sqrt{2}$

Q.2 A) Complete the following Activities. (Any two)

1) In the figure, if m (arc DXE) = 100° and m (arc AYC) = 40°, find $\angle DBE$.

Ans. In the figure, if m (arc DXE) = 100° and m (arc AYC) = 40°, find \angle DBE.

(4)

2) In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

Ans. In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

3) From the information given in the figure, find PR and PQ.

Ans. From the information given in the figure, find PR and PQ.

B) Solve the following questions. (Any four)

1) If the area of the minor sector is 392.5 sq. cm and the corresponding central angle is 72°, find the radius $(\pi = 3.14)$.

Ans. Area of minor sector = $\frac{\theta}{360} \times \pi r^2$

$$\therefore 392.5 = \frac{72}{360} \times 3.14 \times r^{2}$$

$$\therefore 392.5 = \frac{1}{5} \times 3.14 \times r^{2}$$

$$\therefore \frac{392.5 \times 5}{3.14} = r^{2}$$

$$\therefore 125 \times 5 = r^{2}$$

$$\therefore 625 = r^{2}$$

$$\therefore r = 25 \text{ cm} \qquad \dots \text{(Taking square root on both side)}$$

$$\therefore \text{Radius of the circle is 25 cm.}$$

2) Find the co-ordinates of point P if P is the midpoint of a line segment AB with A(-4, 2) and B(6, 2).

Ans. $(-4, 2) = (x_1, y_1); (6, 2) = (x_2, y_2)$ and co-ordinates of P are (x, y)

$$x = \frac{x_1 + x_2}{2} = \frac{-4 + 6}{2} = \frac{2}{2} = 1$$
$$y = \frac{y_1 + y_2}{2} = \frac{2 + 2}{2} = \frac{4}{2} = 2$$

- \therefore co-ordinates of midpoint P are (1, 2).
- 3) In adjoining figure, seg PS \perp seg RQ seg QT \perp seg PR. If RQ = 6, PS = 6 and PR = 12, then find QT.

- Ans. RQ = 6, PS = 6 and PR = 12 ... (Given) Area of a triangle = $\frac{1}{2} \times base \times height$ $A(\Delta PQR) = \frac{1}{2} \times QR \times PS$ $\therefore A(\Delta PQR) = \frac{1}{2} \times 6 \times 6$ $\therefore A(\Delta PQR) = 18 \text{ units}^2 \qquad ... (1)$ also, $A(\Delta PQR) = \frac{1}{2} \times PR \times QT$ $\therefore 18 = \frac{1}{2} \times 12 \times QT$ $\therefore QT = \frac{18}{6}$ $\therefore QT = 3$ QT = 3
- 4) A Ladder 10m long reaches a window 8m above the ground. Find the distance of the foot of the ladder from the base of the wall.

Ans.

Let $\Box ABCD$ be a given rectangle In $\Box ABCD$, $\angle A = \angle B = \angle C = \angle D = \dots$ [angles of a rectangle] 90° $\therefore \ \angle A = \angle C = 180^{\circ}$

- \therefore $\angle B = \angle D = 180^{\circ}$... [opposite angle of a quadrilateral are supplementary, then the quadrilateral is a cyclic quadrilateral]
 - ∴ □ABCD is a cyclic

quadrilateral

Q.3 A) Complete the following activity. (Any one)

1) A circus tent is cylindrical up to a height of 3.3 m and conical above it. If the radius of the base is 50 m and the slant height of the conical part is 56.4 m, find the canvas used in making the tent.

For the cylindrical part : r = 50 m, h = 3.3 mFor the conical part : r = 50 m, I = 56.4 mCanvas used in making tent

= _____ + curved surface area of conical part

(3)

 $= ___ + \pi r I \qquad ... (Formula)$ $= \pi r ___$ $= \frac{22}{7} \times 50 \times ___$ $= \frac{22}{7} \times 50 (6.6 + 56.4) \qquad ... (Substituting the given values)$ $= __$ $= 1100 \times 9$ $= __$ The canvas used in making the lent is ___

Ans. A circus tent is cylindrical up to a height of 3.3 m and conical above it. If the radius of the base is 50 m and the slant height of the conical part is 56.4 m, find the canvas used in making the tent.

For the cylindrical part : r = 50 m, h = 3.3 m For the conical part : r = 50 m, l = 56.4 m Canvas used in making tent = curved surface area of cylindrical part + curved surface area of conical part = $2\pi rh + \pi r/$... (Formula) = $\pi r (2h + l)$ = $\frac{22}{7} \times 50 \times (2 \times 3.3 + 56.4)$ = $\frac{22}{7} \times 50 (6.6 + 56.4)$... (Substituting the given values) = $\frac{1100}{7} \times 63$ = 1100 × 9 = 9900 m²

The canvas used in making the lent is 9900 m².

2) Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects ∠MRN as well as ∠MON.

seg OR bisects ∠MON

. [.] .

	In \triangle OMR and \triangle ONR, side MR \cong side N	IR []
	$\angle OMR = \angle ONR = 90^{\circ}$	[]
	radius OM \cong	[radius of same circle]
<i>.</i>	$\Delta \text{OMR} \sim \Delta \text{ONR}$	[]
<i>.</i>	∠MRO≅	[congruent angles of similar triangles]
<i>.</i>	seg OR bisects ∠MRN	
	Also,	
	≅∠NOR	[congruent angles of similar triangles]

Ans. Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects ∠MRN as well as ∠MON.

Hence proved.

In \triangle OMR and \triangle ONR, side ... [Tangents drawn from same external point to the circle are $MR \cong side NR$ congruent] $\angle OMR = \angle ONR = 90^{\circ}$... [Radius perpendicular to tangent] $\text{radius OM}\cong\text{radius ON}$... [radius of same circle] . . $\Delta \text{OMR} \sim \Delta \text{ONR}$... [by SAS Test of similarity] ∠MRO≅∠NRO ... [congruent angles of similar triangles] . . seg OR bisects ∠MRN .**`**.

Also, $\angle MOR \cong \angle NOR$

... [congruent angles of similar triangles]

 \therefore seg OR bisects \angle MON Hence proved.

B) Solve the following questions. (Any two)

1) Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle?

Ans.	$\frac{A(A)}{A(A)}$	$\frac{1}{2} = \frac{2}{3}$ (given)	
		$\frac{b_1}{2} = \frac{b_1}{b_2}$ {heights are same, hence area proportional to bases}	
	÷.	$\frac{2}{3} = \frac{b_1}{b_2}$	
	As	2 < 3	
	<i>.</i>	$b_1 < b_2$	
	<i>.</i> `.	base of the smallest triangle = $b_1 = 6$ cm.	
	<i>.</i>	$\frac{2}{3} = \frac{6}{b_2}$	
	<i>.</i> `.	$b_2 \times 2 = 3 \times 6$	
	<i>.</i>	$b_2 = \frac{3 \times 6}{2}$	
		$b_2 = \frac{1\hat{8}}{2}$	
	<i>.</i>	b ₂ = 9 cm.	
	<i>.</i>	Corresponding base of bigger triangle is 9 cm.	
2)	Dres	ave the following	

2) Prove the following

 $\cot^2\theta$ - $\tan^2\theta$ = $\csc^2\theta$ - $\sec^2\theta$

Ans. LHS =
$$\cot^2\theta - \tan^2\theta$$

$$= \left(\frac{\cos\theta}{\sin\theta}\right)^2 - \left(\frac{\sin\theta}{\cos\theta}\right)^2 \qquad \dots \left[\cot\theta = \frac{\cos\theta}{\sin\theta}, \tan\theta = \frac{\sin\theta}{\cos\theta}\right]$$
$$= \frac{\cos^2\theta}{\sin^2\theta} - \frac{\sin^2\theta}{\cos^2\theta}$$
$$= \frac{\cos^4\theta - \sin^4\theta}{\sin^2\theta \times \cos^2\theta}$$

(6)

$$= \frac{(\cos^2 \theta)^2 - (\sin^2 \theta)^2}{\sin^2 \theta \times \cos^2 \theta}$$

= $\frac{(\cos^2 \theta + \sin^2 \theta) \times (\cos^2 \theta - \sin^2 \theta)}{\sin^2 \theta \times \cos^2 \theta}$... $[(a + b) (a - b) = a^2 - b^2]$
= $\frac{\cos^2 \theta - \sin^2 \theta}{\sin^2 \theta \times \cos^2 \theta}$
= $\frac{\cos^2 \theta}{\sin^2 \theta \times \cos^2 \theta} - \frac{\sin^2 \theta}{\sin^2 \theta \times \cos^2 \theta}$
= $\frac{1}{\sin^2 \theta} - \frac{1}{\cos^2 \theta}$
= $\cose^2\theta - \sec^2\theta$... $[\csc \theta = \frac{1}{\sin \theta}, \sec \theta = \frac{1}{\cos \theta}]$

∴ LHS = RHS

3) In chords AC and DE intersect at B. If $\angle ABE = 108^\circ$, m(arc AE) = 95°, find m(arc DC).

Ans. Given: m (arc AE) = 95°

(Given)

...

∠ABE = 108°

 \angle ABE has its vertex inside the circle and intercepts arc AE and its vertically opposite \angle DBC intercepts arc DC.

∠ABE =
$$\frac{1}{2}$$
[m(arc AE) + m(arc DC)]
∴ 108° = $\frac{1}{2}$ × [95° + m(arc DC)]
∴ 108° × 2 = 95° + m(arc DC)
∴ 216° = 95° + m(arc DC)
∴ m(arc DC) = 216° - 95°

∴m(arc DC) = 121° m(arc DC) = 121°.

4) The measure of a central angle of a circle is 150 ° and radius of the circle is 21 cm. Find the length of the arc and area of the sector associated with the central angle.

Ans. $r = 21 \text{ cm}, \theta = 150, \pi = \frac{22}{7}$

Area of the sector, $A = \frac{\theta}{360} \times \pi r^2$ $= \frac{150}{360} \times \frac{22}{7} \times 21 \times 21$ $= \frac{1155}{2} = 577.5 cm^2$ Length of the arc, $I = = \frac{\theta}{360} \times 2\pi r$ $= \frac{150}{360} \times 2 \times \frac{22}{7} \times 21$ = 55 cm

Q.4 Solve the following questions. (Any two)

- (8)
- 1) In the following examples, can the segment joining the given points form a triangle ? If triangle is formed, state the type of the triangle considering sides of the triangle. P(-2, -6), Q(-4, -2), R(-5, 0)

Ans. Let
$$P \equiv (-2, -6) \equiv (x_1, y_1),$$

 $Q \equiv (-4, -2) \equiv (x_2, y_2),$
 $R \equiv (-5, 0) \equiv (x_2, y_2),$
By distance formula

By distance formula

PQ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(-4 - (-2))^2 + (-2 - (-6))^2}$
= $\sqrt{(-4 + 2)^2 + (-2 + 6)^2}$
= $\sqrt{(-2)^2 + (4)^2}$
= $\sqrt{4 + 16}$
= $\sqrt{20}$
= $\sqrt{4 \times 5}$
 \therefore PQ = $2\sqrt{5}$
By distance formula
QR = $\sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$
= $\sqrt{(-5 - (4))^2 + [0 - (-2)]^2}$
= $\sqrt{(-5 + 4)^2 + (0 + 2)^2}$
= $\sqrt{(-5 + 4)^2 + (0 + 2)^2}$
= $\sqrt{(-1)^2 + (2)^2}$
= $\sqrt{(-1)^2 + (2)^2}$
= $\sqrt{(-1)^2 + (2)^2}$
= $\sqrt{(-5 + 2)^2 + (0 + 6)^2}$
= $\sqrt{(-5 + 2)^2 + (0 + 6)^2}$
= $\sqrt{(-3)^2 + (6)^2}$
= $\sqrt{9 \times 5}$
 \therefore PR = $3\sqrt{5}$
PQ + QR = PR

... I

... I

... III

... [From I, II] ... [From III] ... [From I, II, III]

- ... Points P, Q, R are collinear
- ... The line segments joining the points A, B, C do not determine a triangle.
- 2) \triangle RHP ~ \triangle NED, In \triangle NED, NE = 7 cm, \angle D = 30⁰ \angle N = 20⁰ and $\frac{\text{HP}}{\text{ED}} = \frac{4}{5}$; Construct \triangle RHP and \triangle NED

ABC is a right angled triangle with ∠A = 90°. A circle is inscribed in it. The lengths of the sides containing the right angle are 6 cm and 8 cm.
 Find the radius of the circle.

Ans. In ∆CAB, m∠CAB = 90° ... (Given) · . By Pythagoras theorem, $BC^2 = AC^2 + AB^2$ $BC^2 = (6)^2 + (8)^2$ $BC^2 = 36 + 64$ $BC^{2} = 100$ BC = $\sqrt{100}$ = 10 cm Let the radius of the circle be r cm. \therefore OP = OQ = r ... (Radii of the same circle) m∠OPA = 90° m∠OQA = 90° ... (ii) [Tangent is perpendicular to the radius] ∴ In □APOQ, $m \angle PAQ = 90^{\circ}$... (Given) $m \angle OPA = 90^{\circ}$... [From (ii)] \therefore \Box APOQ is a rectangle ... [Definition of a rectangle] OQ = AP = r \therefore OP = AQ = r ... [Opp. sides of a rectangle are congruent] AC = AP + CP... [A – P – C] 6 = r + CP∴ CP = (6 – r) cm AB = AQ + BQ... [A - Q - B] 8 = r + BQ BQ = (8 - r) cm... [The length of two tangent segments to the circle drawn from an \therefore CP = CR = 6 - r cm external point are equal] BQ = BR = 8 - r cm.:. BC = BR + CR ... [B – R – C] 10 = 8 - r + 6 - r10 = 14 - 2r 2r = 14 - 102r = 4 r = 2 cm. Radius of the circle is 2 cm

Q.5 Solve the following questions. (Any one)

1) A ladder on the platform of a fire brigade van can be elevated at an angle of 70^0 to the maximum. The length of the ladder can be extended upto 20m. If the platform is 2m above the ground, find the maximum height from the ground upto which the ladder can reach. (sin $70^\circ \approx 0.94$)

Ans.

(3)

from the ground.

2) A solid cube is cut into two cuboids exactly at middle as shown in figure. Find the ratio of the total surface area of the given cube and that of the cuboid.

Ans. For the solid cube, length of edge = ℓ Total surface area of cube = $6\ell^2$ sq. units ...(i) For the cuboid length = length of cube = ℓ height = length of cube = ℓ breadth = $\frac{\text{length of cube}}{2} = \frac{2}{2}$

Total surface area of each cuboid = 2 (ab + bh + ha)

$$= 2 \left[2 \left[\frac{2}{2} + \frac{2}{2} \times 2 \times 2 \right] \right]$$
$$= 2 \left[\frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right]$$
$$= 2 \left[\frac{2^{2}}{2} + 2^{2} \right] = 2 \left[2^{2} + 2^{2} \right] = 4^{2} \qquad \dots (ii)$$

Total surface area of each cuboid = 4l2 sq. units.

...[From (i) and (ii)]

$$\frac{\text{Total surface area of cube}}{\text{Total surface area of cuboid}} = \frac{6^2}{4^2}$$
$$= \frac{3}{2}$$

 \therefore The ratio of total surface area of the given cube and that of cuboid is 3 : 2