PARISHRAM PUBLICATIONS

Std.: X (English)
Mathematics Part - II
Marks: 40
Date: 14-Dec-2019
Parishram Academy
Time: 2 hrs
Chapter: All
Note:-

Q. 1 A) Solve Multiple choice questions.

1)

In the given figure, $A B$ is a diameter of the circle. If $A C=B C$, then $\angle C A B$ is equal to
a. 30°
b. 60°
c. 90°
d. 45°

Ans. Option d.
2) The maximum number of tangents that can be drawn to a circle from a point out side it is \qquad
a. 2
b. 1
c. one and only one
d. 0

Ans. Option a.
3) A person is standing at distance of 40 m from building looking at its top at an angle of elevation 45°. Find height of church.
a. 45 m
b. $\frac{40}{\sqrt{2}} \mathrm{~m}$
C. ${ }^{40} \sqrt{2}$
d. 40 m

Ans. Option d.
4) Find the volume of cube having length of side 6.
a. $36 \mathrm{~cm}^{3}$
b. $216 \mathrm{~cm}^{3}$
c. $108 \mathrm{~cm}^{3}$
d. $27 \mathrm{~cm}^{3}$

Ans. Option b.
B) Solve the following questions.

1) In $\triangle P Q R$, seg $R S$ bisects $\angle R$. If $P R=15, R Q=20, P S=12$ then find $S Q$.

Ans. In $\triangle P R Q$, seg $R S$ bisects $\angle R$.

$$
\begin{aligned}
& \frac{\mathrm{PR}}{\mathrm{RQ}}=\frac{\mathrm{PS}}{\mathrm{SQ}} \quad \ldots \text { (Angle bisector property) } \\
& \frac{15}{20}=\frac{12}{\mathrm{SQ}}
\end{aligned}
$$

$\mathrm{SQ}=\frac{12 \times 20}{15}$
$\therefore \quad S Q=16$
2) Radius of a circle is 10 cm . Area of a sector is $100 \mathrm{~cm}^{2}$. Find the area of its corresponding major sector. ($\pi=3.14$).

Ans. Area of a major sector =Area of circle -Area of a minor sector

$$
\begin{aligned}
& =\pi r^{2}-100 \\
& =(3.14 \times 10 \times 10-100) \\
& =314-100 \\
& =214 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of major sector $=214 \mathrm{~cm}^{2}$
3) Find the slopes of the lines passing through the given points.

$$
T(0,-3), S(0,4)
$$

Ans. Let $\mathrm{T} \equiv(0,-3) \equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{S} \equiv(0,4) \equiv\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

$$
\begin{aligned}
\text { Slope of line TS } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-(-3)}{0-0} \\
& =\frac{7}{0}
\end{aligned}
$$

$\therefore \quad$ Slope of line TS $=$ not defined
4) Find the length of the hypotenuse of a square whose side is 16 cm .

Ans.
$\square \mathrm{ABCD}$ is a square.
In right angled triangle $\triangle A B C$,
$A C^{2}=A B^{2}+B C^{2}$
... (by Pythagoras theorem)
$\therefore \quad A C^{2}=16^{2}+16^{2}$
$\therefore \quad A C^{2}=256+256$
$\therefore \quad A C^{2}=512$
$\therefore \quad A C=16 \sqrt{2}$

Q. 2 A) Complete the following Activities. (Any two)

1) In the figure, if $\mathrm{m}(\operatorname{arc} \operatorname{DXE})=100^{\circ}$ and $\mathrm{m}(\operatorname{arc} \mathrm{AYC})=40^{\circ}$, find $\angle \mathrm{DBE}$.

Ans. In the figure, if $m(\operatorname{arc} \operatorname{DXE})=100^{\circ}$ and $m(\operatorname{arc} A Y C)=40^{\circ}$, find $\angle \mathrm{DBE}$.

$$
\begin{aligned}
\angle \mathrm{DBE} & =\frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{DXE})-\mathrm{m}(\operatorname{arc} A Y C)] \\
& =\frac{1}{2}\left(100^{\circ}-40^{\circ}\right) \\
& =\frac{1}{2} \times 60^{\circ} \\
& =30^{\circ} \\
& \angle \mathrm{DBE}=30^{\circ}
\end{aligned}
$$

2) In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg $P Q \|$ seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

In $\triangle \mathrm{XDE}, \mathrm{PQ}| | \mathrm{DE} \ldots$ \qquad
$\therefore \quad$ $=$ \qquad (I) (Basic proportionality theorem)
$\ln \Delta X E F, Q R \| E F$ \qquad
$\therefore \quad=$ \qquad .. (II) (Basic proportionality theorem)
$\therefore \quad=$ \qquad ... from (I) and (II)
$\therefore \quad$ seg PR\|seg DF
... (Converse of basic proportionality theorem)
Ans. In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg $\mathrm{PQ} \|$ seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

In $\triangle X D E, P Q \| D E . .$. Given
$\therefore \quad \frac{\mathrm{XP}}{\mathrm{PD}}=\frac{\mathrm{XQ}}{\mathrm{QE}} \quad \ldots$ (I) (Basic proportionality theorem)
$\operatorname{In} \triangle X E F, Q R \| E F \quad$... Given
$\therefore \quad \mathrm{XQ}=\frac{\mathrm{XR}}{\mathrm{RF}}$
... (II) (Basic proportionality theorem)
$\therefore \quad \frac{\mathrm{XP}}{\mathrm{PD}}=\frac{\mathrm{XR}}{\mathrm{RF}}$
$\therefore \quad$ seg PR\|seg DF $\quad .$. (Converse of basic proportionality theorem)
3) From the information given in the figure, find $P R$ and $P Q$.

In $\triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}, \angle \mathrm{P}=60^{\circ}$, and $\angle \mathrm{R}=30^{\circ}$.
By the theorem of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle,
QR = \qquad PR
... (Side opposite to 60°)
$\therefore \quad 6 \sqrt{3}=\frac{\sqrt{3}}{2} \mathrm{PR}$
$\therefore \quad \mathrm{PR}=6 \sqrt{3} \times \frac{2}{\sqrt{3}}$
$\therefore \quad \mathrm{PR}=$
$P Q=\frac{1}{2} P R$
$\therefore \quad P Q=\frac{1}{2} \times 12 \mathrm{~cm}$
... (From (1))
$\therefore \quad P Q=$ \qquad
$P R=$ \qquad ; $P Q=$ \qquad
Ans. From the information given in the figure, find $P R$ and $P Q$.

In $\triangle P Q R, \angle Q=90^{\circ}, \angle P=60^{\circ}$, and $\angle \mathrm{R}=30^{\circ}$.
By the theorem of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle,
$\mathrm{QR}=\frac{\sqrt{3}}{2} \quad \mathrm{PR}$
... (Side opposite to $\left.60^{\circ}\right)$
$\therefore \quad 6 \sqrt{3}=\frac{\sqrt{3}}{2} \mathrm{PR}$
$\therefore \quad \mathrm{PR}=6 \sqrt{3} \times \frac{2}{\sqrt{3}}$
$\therefore \quad \mathrm{PR}=12 \mathrm{~cm}$
$P Q=\frac{1}{2} P R$
... (Side opposite to 30°)
$\therefore \quad \mathrm{PQ}=\frac{1}{2} \times 12 \mathrm{~cm}$
... (From (1))
$\therefore \quad P Q=6 \mathrm{~cm}$.
$P R=12 \mathrm{~cm} ; P Q=6 \mathrm{~cm}$
B) Solve the following questions. (Any four)

1) If the area of the minor sector is $392.5 \mathrm{sq} . \mathrm{cm}$ and the corresponding central angle is 72°, find the radius ($\pi=3.14$).

Ans. Area of minor sector $=\frac{\theta}{360} \times \pi \mathrm{r}^{2}$
$\therefore 392.5=\frac{72}{360} \times 3.14 \times \mathrm{r}^{2}$
$\therefore 392.5=\frac{1}{5} \times 3.14 \times \mathrm{r}^{2}$
$\therefore \frac{392.5 \times 5}{3.14}=\mathrm{r}^{2}$
$\therefore 125 \times 5=\mathrm{r}^{2}$
$\therefore 625=\mathrm{r}^{2}$
$\therefore \mathrm{r}=25 \mathrm{~cm}$
...(Taking square root on both side)
\therefore Radius of the circle is 25 cm .
2) Find the co-ordinates of point P if P is the midpoint of a line segment $A B$ with $A(-4,2)$ and $B(6,2)$.

Ans. $\quad(-4,2)=\left(x_{1}, y_{1}\right) ;(6,2)=\left(x_{2}, y_{2}\right)$ and co-ordinates of P are (x, y)
$\therefore \quad$ According to midpoint theorem,

$$
\begin{aligned}
& x=\frac{x_{1}+x_{2}}{2}=\frac{-4+6}{2}=\frac{2}{2}=1 \\
& y=\frac{y_{1}+y_{2}}{2}=\frac{2+2}{2}=\frac{4}{2}=2
\end{aligned}
$$

$\therefore \quad$ co-ordinates of midpoint P are $(1,2)$.
3) In adjoining figure, seg $P S \perp \operatorname{seg} R Q \operatorname{seg} Q T \perp \operatorname{seg} P R$. If $R Q=6, P S=6$ and $P R=12$, then find $Q T$.

Ans. $\quad \mathrm{RQ}=6, \mathrm{PS}=6$ and $\mathrm{PR}=12$... (Given)
Area of a triangle $=\frac{1}{2} \times$ base \times height
$A(\triangle P Q R)=\frac{1}{2} \times Q R \times P S$
$\therefore \mathrm{A}(\triangle \mathrm{PQR})=\frac{1}{2} \times 6 \times 6$
$\therefore \mathrm{A}(\triangle \mathrm{PQR})=18$ units 2
also, $A(\triangle P Q R)=\frac{1}{2} \times P R \times Q T$
$\therefore 18=\frac{1}{2} \times 12 \times$ QT
\therefore QT $=\frac{18}{6}$
\therefore QT $=3$
QT $=3$
4) A Ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.

Ans. Seg AC represents the ladder.
Seg BC represents the ground.
C represents the foot of the ladder.
B represents the base of the wall.
A represents the window above the ground
$A C=10 \mathrm{~m}, \mathrm{AB}=8 \mathrm{~m}$.

i) In $\triangle A B C, \angle A B C=90^{\circ}$
... (Base of the wall of the building \perp to the ground)
$\therefore \quad A B^{2}+B C^{2}=A C^{2}$
... (Pythagoras theorem)
ii) But, $A B=8 \mathrm{~m}, \mathrm{AC}=10 \mathrm{~m}$... (given)
iii) $\therefore \quad 8^{2}+B C^{2}=10^{2}$
$\therefore \quad 64+\mathrm{BC}^{2}=100$
$\therefore \quad B C^{2}=100-64$
$\therefore \quad B C^{2}=36$
$\therefore \quad B C=\sqrt{36} \quad$... (Taking square root)
$\therefore \quad B C=6 \mathrm{~m}$
5) Prove that, any rectangle is a cyclic quadrilateral.

Ans.

Let $\square A B C D$ be a given
rectangle
In $\square A B C D$,
$\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=\ldots$ [angles of a rectangle]
90°
$\therefore \angle \mathrm{A}=\angle \mathrm{C}=180^{\circ}$
$\therefore \angle \mathrm{B}=\angle \mathrm{D}=180^{\circ} \quad .$. [opposite angle of a quadrilateral are supplementary, then the quadrilateral is a cyclic quadrilateral]
$\therefore \quad \square A B C D$ is a cyclic
quadrilateral

Q. 3 A) Complete the following activity. (Any one)

1) A circus tent is cylindrical up to a height of 3.3 m and conical above it. If the radius of the base is 50 m and the slant height of the conical part is 56.4 m , find the canvas used in making the tent.

For the cylindrical part : $\mathrm{r}=50 \mathrm{~m}, \mathrm{~h}=3.3 \mathrm{~m}$
For the conical part : $\mathrm{r}=50 \mathrm{~m}, \mathrm{I}=56.4 \mathrm{~m}$
Canvas used in making tent
= \qquad + curved surface area of conical part
$=$ \qquad $+\pi r /$
$=\pi r$ \qquad
$=\frac{22}{7} \times 50 \times$ \qquad
$=\frac{22}{7} \times 50(6.6+56.4)$
... (Substituting the given values)
= \qquad
$=1100 \times 9$
= \qquad
The canvas used in making the lent is \qquad
Ans. A circus tent is cylindrical up to a height of 3.3 m and conical above it. If the radius of the base is 50 m and the slant height of the conical part is 56.4 m , find the canvas used in making the tent.

For the cylindrical part : $\mathrm{r}=50 \mathrm{~m}, \mathrm{~h}=3.3 \mathrm{~m}$
For the conical part : $\mathrm{r}=50 \mathrm{~m}, \mathrm{l}=56.4 \mathrm{~m}$
Canvas used in making tent
= curved surface area of cylindrical part + curved surface area of conical part
$=2 \pi r h+\pi r l$
$=\pi r(2 h+l)$
$=\frac{22}{7} \times 50 \times(2 \times 3.3+56.4)$
$=\frac{22}{7} \times 50(6.6+56.4)$
$=\frac{1100}{7} \times 63$
$=1100 \times 9$
$=9900 \mathrm{~m}^{2}$
The canvas used in making the lent is $9900 \mathrm{~m}^{2}$.
2) Seg RM and seg $R N$ are tangent segments of a circle with centre O. Prove that seg OR bisects $\angle M R N$ as well as $\angle \mathrm{MON}$.

In $\triangle \mathrm{OMR}$ and $\triangle \mathrm{ONR}$, side $\mathrm{MR} \cong$ side $N R \ldots$ \square
$\angle O M R=\angle O N R=90^{\circ}$
$\ldots \square$
radius $\mathrm{OM} \cong$ \qquad ... [radius of same circle]
$\therefore \quad \triangle \mathrm{OMR} \sim \triangle \mathrm{ONR}$
\ldots...
$\therefore \quad \angle \mathrm{MRO} \cong$ \qquad ... [congruent angles of similar triangles]
$\therefore \quad$ seg OR bisects $\angle \mathrm{MRN}$
Also,
\qquad $\cong \angle \mathrm{NOR}$
... [congruent angles of similar triangles] Hence proved.
$\therefore \quad$ seg OR bisects $\angle \mathrm{MON}$
Ans. Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg $O R$ bisects $\angle M R N$ as well as $\angle \mathrm{MON}$.

In $\triangle \mathrm{OMR}$ and $\triangle \mathrm{ONR}$, side $M R \cong$ side $N R$
$\angle \mathrm{OMR}=\angle \mathrm{ONR}=90^{\circ}$
radius $\mathrm{OM} \cong$ radius ON
$\therefore \quad \triangle \mathrm{OMR} \sim \triangle \mathrm{ONR}$
$\therefore \quad \angle \mathrm{MRO} \cong \angle \mathrm{NRO}$
$\therefore \quad$ seg OR bisects $\angle \mathrm{MRN}$
Also,
$\angle \mathrm{MOR} \cong \angle \mathrm{NOR}$
$\therefore \quad$ seg OR bisects $\angle \mathrm{MON}$
... [congruent angles of similar triangles]
... [Tangents drawn from same external point to the circle are congruent]
... [Radius perpendicular to tangent]
... [radius of same circle]
... [by SAS Test of similarity]
... [congruent angles of similar triangles]
Hence proved.
B) Solve the following questions. (Any two)

1) Ratio of areas of two triangles with equal heights is $2: 3$. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle?

Ans. $\frac{\mathrm{A}\left(\mathrm{A}_{1}\right)}{\mathrm{A}\left(\mathrm{A}_{2}\right)}=\frac{2}{3}$
$\frac{A\left(A_{1}\right)}{A\left(A_{2}\right)}=\frac{b_{1}}{b_{2}} \quad \ldots$ \{heights are same, hence area proportional to bases\}
$\therefore \quad \frac{2}{3}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
As $2<3$
$\therefore \quad \mathrm{b}_{1}<\mathrm{b}_{2}$
$\therefore \quad$ base of the smallest triangle $=b_{1}=6 \mathrm{~cm}$.
$\therefore \quad \frac{2}{3}=\frac{6}{\mathrm{~b}_{2}}$
$\therefore \quad b_{2} \times 2=3 \times 6$
$\therefore \quad \mathrm{b}_{2}=\frac{3 \times 6}{2}$
$\therefore \quad b_{2}=\frac{18}{2}$
$\therefore \quad b_{2}=9 \mathrm{~cm}$.
$\therefore \quad$ Corresponding base of bigger triangle is 9 cm .
2) Prove the following

$$
\operatorname{Cot}^{2} \theta-\tan ^{2} \theta=\operatorname{cosec}^{2} \theta-\sec ^{2} \theta
$$

Ans. LHS $=\cot ^{2} \theta-\tan ^{2} \theta$

$$
\begin{aligned}
& =\left(\frac{\cos \theta}{\sin \theta}\right)^{2}-\left(\frac{\sin \theta}{\cos \theta}\right)^{2} \quad \ldots\left[\cot \theta=\frac{\cos \theta}{\sin \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta}\right] \\
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\cos ^{4} \theta-\sin ^{4} \theta}{\sin ^{2} \theta \times \cos ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(\cos ^{2} \theta\right)^{2}-\left(\sin ^{2} \theta\right)^{2}}{\sin ^{2} \theta \times \cos ^{2} \theta} \\
& =\frac{\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \times\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\sin ^{2} \theta \times \cos ^{2} \theta} \ldots\left[(a+b)(a-b)=a^{2}-b^{2}\right] \\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta \times \cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta \times \cos ^{2} \theta}-\frac{\sin ^{2} \theta}{\sin ^{2} \theta \times \cos ^{2} \theta} \\
& =\frac{1}{\sin ^{2} \theta}-\frac{1}{\cos ^{2} \theta} \\
& =\operatorname{cosec}^{2} \theta-\sec ^{2} \theta
\end{aligned} \quad \ldots\left[\operatorname{cosec} \theta=\frac{1}{\sin \theta}, \sec \theta=\frac{1}{\cos \theta}\right] .
$$

$\therefore \quad$ LHS $=$ RHS
3) In chords $A C$ and $D E$ intersect at B. If $\angle A B E=108^{\circ}, m(\operatorname{arc} A E)=95^{\circ}$, find $m(\operatorname{arc} D C)$.

Ans.
Given: $m(\operatorname{arc} A E)=95^{\circ}$
$\angle A B E=108^{\circ}$
$\angle \mathrm{ABE}$ has its vertex inside the circle and intercepts arc AE and its vertically opposite $\angle \mathrm{DBC}$ intercepts arc DC.
$\angle A B E=\frac{1}{2}[m(\operatorname{arc} A E)+m(\operatorname{arc} D C)]$
$\therefore 108^{\circ}=\frac{1}{2} \times\left[95^{\circ}+\mathrm{m}(\operatorname{arc} \mathrm{DC})\right]$
$\therefore 108^{\circ} \times 2=95^{\circ}+m(\operatorname{arc} D C)$
$\therefore 216^{\circ}=95^{\circ}+\mathrm{m}(\operatorname{arc} \mathrm{DC})$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DC})=216^{\circ}-95^{\circ}$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DC})=121^{\circ}$
$m(\operatorname{arc} D C)=121^{\circ}$.
4) The measure of a central angle of a circle is 150° and radius of the circle is 21 cm . Find the length of the arc and area of the sector associated with the central angle.

Ans. $\mathrm{r}=21 \mathrm{~cm}, \theta=150, \pi=\frac{22}{7}$

Area of the sector, $A=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{150}{360} \times \frac{22}{7} \times 21 \times 21$
$=\frac{1155}{2}=577.5 \mathrm{~cm}^{2}$
Length of the arc, $I==\frac{\theta}{360} \times 2 \pi r$
$=\frac{150}{360} \times 2 \times \frac{22}{7} \times 21$
$=55 \mathrm{~cm}$

Q. $4 \quad$ Solve the following questions. (Any two)

1) In the following examples, can the segment joining the given points form a triangle ? If triangle is formed, state the type of the triangle considering sides of the triangle. $P(-2,-6), Q(-4,-2), R(-5,0)$

Ans. Let $P \equiv(-2,-6) \equiv\left(x_{1}, y_{1}\right)$,

$$
\begin{aligned}
& Q \equiv(-4,-2) \equiv\left(x_{2}, y_{2}\right), \\
& R \equiv(-5,0) \equiv\left(x_{2}, y_{2}\right),
\end{aligned}
$$

By distance formula

$$
\begin{align*}
\mathrm{PQ} & =\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\
& =\sqrt{[-4-(-2)]^{2}+[-2-(-6)]^{2}} \\
& =\sqrt{(-4+2)^{2}+(-2+6)^{2}} \\
& =\sqrt{(-2)^{2}+(4)^{2}} \\
& =\sqrt{4+16} \\
& =\sqrt{20} \\
& =\sqrt{4 \times 5} \\
\therefore \quad \mathrm{PQ} & =2 \sqrt{5} \\
& \text { By distance formula } \\
\mathrm{QR} & =\sqrt{\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{3}-\mathrm{y}_{2}\right)^{2}} \\
& =\sqrt{[-5-(4)]^{2}+[0-(-2)]^{2}} \\
& =\sqrt{(-5+4)^{2}+(0+2)^{2}} \\
& =\sqrt{(-1)^{2}+(2)^{2}} \\
& =\sqrt{1+4} \\
\therefore \quad \mathrm{QR} & =\sqrt{5}
\end{align*}
$$

By distance formula
$P R=\sqrt{\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}}$
$=\sqrt{[-5-(-2)]^{2}+[0-(-6)]^{2}}$
$=\sqrt{(-5+2)^{2}+(0+6)^{2}}$
$=\sqrt{(-3)^{2}+(6)^{2}}$
$=\sqrt{9+36}$
$=\sqrt{45}$
$=\sqrt{9 \times 5}$
$\therefore \quad P R=3 \sqrt{5}$
... III
$P Q+Q R=2 \sqrt{5}+\sqrt{5}$
... [From I, II]
$=3 \sqrt{5}$
$P R=3 \sqrt{5}$
... [From III]
$\therefore \quad P Q+Q R=P R$
... [From I, II, III]
$\therefore \quad$ Points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear
$\therefore \quad$ The line segments joining the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ do not determine a triangle.
2)
$\triangle R H P \sim \triangle$ NED, In \triangle NED, NE $=7 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \angle \mathrm{N}=20^{\circ}$ and $\frac{\mathrm{HP}}{\mathrm{ED}}=\frac{4}{5}$; Construct \triangle RHP and \triangle NED

Ans. $\quad \triangle \mathrm{RHP} \sim \triangle$ NED ... [Given]
$\therefore \quad \frac{\mathrm{RH}}{\mathrm{NE}}=\frac{\mathrm{HP}}{\mathrm{ED}}=\frac{\mathrm{RP}}{\mathrm{ND}}=\frac{4}{5} ; \mathrm{NE}=7 \ldots[$ c.s.s.t]
$\therefore \quad \frac{\mathrm{RH}}{\mathrm{NE}}=\frac{4}{5}$
$\therefore \quad \frac{\mathrm{RH}}{7}=\frac{4}{5}$
$\therefore \quad \mathrm{RH}=\frac{4 \times 7}{5}=\frac{28}{5}$
$\therefore \quad \mathrm{RH}=5.6$
$\angle \mathrm{R}=\angle \mathrm{N}=20^{\circ}$
$\angle \mathrm{P}=\angle \mathrm{D}=30^{\circ}$
$\therefore \quad \angle \mathrm{H}=\angle \mathrm{E}=130^{\circ}$
... (Remaining angle)

\triangle RHP and \triangle NED are the required triangles
3) $\triangle A B C$ is a right angled triangle with $\angle A=90^{\circ}$. A circle is inscribed in it. The lengths of the sides containing the right angle are 6 cm and 8 cm .
Find the radius of the circle.

Ans. In $\triangle \mathrm{CAB}$,

$$
\begin{equation*}
\mathrm{m} \angle \mathrm{CAB}=90^{\circ} \tag{Given}
\end{equation*}
$$

\therefore By Pythagoras theorem,
$B C^{2}=A C^{2}+A B^{2}$
$B C^{2}=(6)^{2}+(8)^{2}$
$B C^{2}=36+64$
$B C^{2}=100$
$B C=\sqrt{100}$

$$
=10 \mathrm{~cm}
$$

Let the radius of the circle
be rcm .
$\therefore \quad O P=O Q=r$
$m \angle O P A=90^{\circ}$
$\mathrm{m} \angle \mathrm{OQA}=90^{\circ}$
... (ii) [Tangent is perpendicular to the radius]
$\therefore \operatorname{In} \square A P O Q$,
$\mathrm{m} \angle \mathrm{PAQ}=90^{\circ} \quad \ldots$ (Given)
$\mathrm{m} \angle \mathrm{OPA}=90^{\circ}$
... [From (ii)]
$\therefore \quad \square A P O Q$ is a rectangle
... [Definition of a rectangle]
$O Q=A P=r$
$\therefore O P=A Q=r$
... [Opp. sides of a rectangle are congruent]
$A C=A P+C P$
... [A - P - C]
$6=r+C P$
$\therefore \quad C P=(6-r) \mathrm{cm}$
$A B=A Q+B Q$
... $[A-Q-B]$
$8=r+B Q B Q=(8-r) c m$
$\therefore \quad C P=C R=6-r \mathrm{~cm}$
... [The length of two tangent segments to the circle drawn from an external point are equal]
$B Q=B R=8-r c m$
$\therefore \quad B C=B R+C R$
... $[B-R-C]$
$10=8-r+6-r$
$10=14-2 r 2 r=14-10$
$2 r=4 \quad r=2 \mathrm{~cm}$
\therefore Radius of the circle is 2 cm

Q. 5 Solve the following questions. (Any one)

1) A ladder on the platform of a fire brigade van can be elevated at an angle of 70° to the maximum. The length of the ladder can be extended upto 20 m . If the platform is 2 m above the ground, find the maximum height from the ground upto which the ladder can reach. $\left(\sin 70^{\circ} \approx 0.94\right)$

Ans.

Here, $A D$ represents the ladder.
$\therefore \quad A D=20 \mathrm{~m}$
At point D , angle of elevation is 70°.
$\therefore \mathrm{m} \angle \mathrm{EDA}=70^{\circ}$
The lower end of the ladder fitted on fire truck is $2 m$ above the ground.
$\therefore \quad D C=2 m$
Now \square BCDE is a rectangle.
$\therefore \quad D C=E B=2 m$
... [Each angle is 90°]
... [Opposite sides of rectangle are congruent]
In $\triangle A E D, m \angle A E D=90^{\circ}$
$\sin 70^{\circ}=\frac{\mathrm{AE}}{\mathrm{AD}}$
$\therefore \quad 0.94=\frac{\mathrm{AE}}{20}$
$\therefore \quad A E=20 \times 0.94$
$\therefore \quad A E=18.8 \mathrm{~m}$
$A B=A E+E B$
$\therefore \quad A B=18.8+2$
$\therefore \quad A B=20.8 \mathrm{~m}$
The maximum length of other end of the ladder is 20.8 m away from the ground.
2) A solid cube is cut into two cuboids exactly at middle as shown in figure. Find the ratio of the total surface area of the given cube and that of the cuboid.

Ans. For the solid cube, length of edge $=\ell$
Total surface area of cube $=6 \ell^{2}$ sq. units ...(i)
For the cuboid
length $=$ length of cube $=\ell$
height $=$ length of cube $=\ell$
breadth $=\frac{\text { length of cube }}{2}=\frac{l}{2}$
Total surface area of each cuboid $=2(\mathrm{~b}+\mathrm{bh}+\mathrm{h})$

$$
\begin{align*}
& =2\left[e \frac{l}{2}+\frac{l}{2} \times \ell \times c \times l\right] \\
& =2\left[\frac{t^{2}}{2}+\frac{t^{2}}{2}+t^{2}\right] \\
& =2\left[\frac{2 t^{2}}{2}+t^{2}\right]=2\left[z^{2}+t^{2}\right]=4 t^{2} \tag{ii}
\end{align*}
$$

Total surface area of each cuboid $=4 / 2 \mathrm{sq}$. units.
$\therefore \frac{\text { Total surface area of cube }}{\text { Total surface area of cuboid }}=\frac{6 \ell^{2}}{4 \ell^{2}}$
...[From (i) and (ii)]

$$
=\frac{3}{2}
$$

\therefore The ratio of total surface area of the given cube and that of cuboid is $3: 2$

