PARISHRAM PUBLICATIONS

Std.: X (English)
Mathematics Part - II
Marks: 40
Date: 14-Dec-2019
Parishram Academy
Time: 2 hrs

Note:-

Q. 1 A) Solve Multiple choice questions.

1) $(\cos \theta+\sin \theta)^{2}+(\cos \theta-\sin \theta)^{2}$ is equal to
a. -2
b. 0
c. 1
d. 2
2) A circle touches all sides of a parallelogram. So the parallelogram must be a \qquad
\qquad
a. rectangle
b. rhombus
c. square
d. trapezium
3) Find the ratio of the volumes of a cylinder and a cone having equal radius and equal height.
a. 1:2
b. 2 : 1
c. 1:3
d. 3 : 1
4) If in two triangles $A B C$ and $P Q R$,
$\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}}$, then
a. $\triangle P Q R \sim \triangle C A B$
B. $\triangle P Q R \sim \triangle A B C$
C. $\triangle \mathrm{CBA} \sim \triangle \mathrm{PQR}$
D. $B C A \sim \triangle P Q R$
B) Solve the following questions.
5) Identify, with reason, if the following is Pythagorean triplet. 4, 9, 12
6) In the given figure, $\mathrm{CB} \perp \mathrm{AB}, \mathrm{DA} \perp \mathrm{AB}$. If $\mathrm{BC}=4, \mathrm{AD}=8$ then $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADB})}$ find.

7) Area of a sector of a circle of radius 15 cm is $30 \mathrm{~cm}^{2}$. Find the length of the arc of the sector.
8) Prove the following
$\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$
Q. 2 A) Complete the following Activities. (Any two)
9) A side of an isosceles right angled triangle is x. Find its hypotenuse.

In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$
and $\quad P Q=Q R=x$
$\therefore \quad \mathrm{PR}^{2}=$
... [Pythagoras theorem]
$=$ \qquad
$\therefore \quad \mathrm{PR}^{2}=$ \qquad
$\therefore \quad \mathrm{PR}=$ \qquad units ... [Taking square root]
$\therefore \quad$ The length of hypotenuse is \qquad units.
2) If $\sin \theta=\frac{11}{61}$ then find the value of $\cos \theta$ using identity.

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

... [Trigonometric identity]
$\therefore \cos ^{2} \theta=$ \qquad
$=1$ -
$=1-\frac{121}{3721}$
$=$ \qquad
$\therefore \quad \cos ^{2} \theta=$ \qquad
$\therefore \quad \cos \theta=$ \qquad ... [Taking square root]
3)

In chord EF || chord GH. Prove that, chord EG \cong chord FH.
Fill in the blanks and write the proof.

$$
\begin{array}{lll}
& \text { Proof : Draw seg GF. } & \\
& \angle \mathrm{EFG}=\angle \mathrm{FGH} & \ldots \ldots \ldots \ldots \ldots . . \text { (I) } \\
& \angle \mathrm{EFG}=\ldots \ldots \ldots \ldots \ldots . . & \ldots \text { inscribed angle theorem (II) } \\
& \angle \mathrm{FGH}=\ldots \ldots \ldots \ldots . . & \ldots \text { inscribed angle theorem (III) } \\
\therefore & \text { m(arc EG) }=\ldots \ldots \ldots \ldots \ldots . & \ldots \text { from (I), (II), (III). } \\
\therefore & \text { chord EG } \cong \text { chord FH } & \ldots \ldots \ldots \ldots . .
\end{array}
$$

B) Solve the following questions. (Any four)

1) The diameter of a circle is 10 cm . Find the length of the arc, when the corresponding central angle is 144° ($\pi=3.14$).
2)

In the figure circles with centres C and D touch internally at point E. D lies on the inner circle. Chord $E B$ of the outer circle intersects inner circle at point A. Prove that, seg $E A \cong \operatorname{seg} A B$.
3) Draw a circle of radius 3.6. Draw a tangent to the circle at any point on it without using centre.
4) Find the length of altitude of an equilateral triangle having side $2 a$.
5) Find the centroids of the triangles whose vertices are given below.

$$
(3,-5),(4,3),(11,-4)
$$

Q. 3 A) Complete the following activity. (Any one)

1) In a $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$. If $A D=2.4 \mathrm{~cm}$, $A E=3.2 \mathrm{~cm}, \mathrm{DE}=2 \mathrm{~cm}$ and $\mathrm{BC}=5 \mathrm{~cm}$, find the $B D$ and $C E$.

$$
\begin{array}{lrl}
\because & \ln \triangle \mathrm{ABC} \\
\therefore & \mathrm{DE} \| \mathrm{BC} \\
\therefore & \frac{\mathrm{AD}}{\mathrm{AB}} & =\overline{2} \\
& & \frac{2.4}{\mathrm{AB}}
\end{array}=\frac{3.2}{\mathrm{AC}}=\frac{2}{5} .
$$

2) In the circles with centres A and B touch each other at E. Line I is a common tangent which touches the circles at C and D respectively. Find the length of seg CD if the radii of the circles are $4 \mathrm{~cm}, 6 \mathrm{~cm}$.

Construction:
Draw seg AF \perp seg BD
$\therefore \quad \square \mathrm{AFDC}$ is a rectangle.
A-E-B
... \quad]
$\therefore \quad=A B$
$4+6=A B$
$\mathrm{AB}=10 \mathrm{~cm}$
Now, in $\triangle \mathrm{AFB}, \angle \mathrm{AFB}=90^{\circ}$
.... [Construction]

$$
\begin{array}{lll}
& \mathrm{AB}^{2}=\overline{ } & \ldots . .[\text { Pythagoras Theorem }] \\
\therefore & 10^{2}=\overline{\mathrm{AF}^{2}+2^{2}} & \mathrm{BF}= \\
\therefore & \mathrm{AF}^{2}=96 & \\
\therefore & \mathrm{AF}=\overline{\mathrm{CD}=\mathrm{AF}} & \\
\therefore & \mathrm{CD}=
\end{array}
$$

B) Solve the following questions. (Any two)

1) Prove the following.
$\frac{\sin A+\cos A}{\sin A-\cos A}+\frac{\sin A-\cos A}{\sin A+\cos A}=\frac{2}{\sin ^{2} A-\cos ^{2} A}$
2)

In adjoining figure in $\triangle A B C$, point D is on side $A C$. If $A C=16, D C=9$ and $B P \perp A C$, then then find the following ratios.
i. $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}$
ii. $\frac{\mathrm{A}(\triangle \mathrm{BDC})}{\mathrm{A}(\triangle \mathrm{ABC})}$
iii. $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{BDC})}$
3) Draw a circle with centre P and radius 3.4 cm . Take point Q at a distance 5.5 cm from the centre. Construct tangents to the circle from point Q .
4) In figure, chord MN and chord RS intersect at point D .
(1) If $R D=15, D S=4, M D=8$ find $D N$
(2) If $R S=18, M D=9, D N=8$ find $D S$

Q. 4 Solve the following questions. (Any two)

1) Find the equation of the line passing through the point of intersection of the line $4 x+3 y+2=0$ and $6 x+$ $5 y+6=0$ and the point of intersection of the lines $4 x-3 y-17=0$ and $2 x+3 y+5=0$.
2)

A cylinder and a cone have equal bases. The height of the cylinder is 3 cm and the area of its base is $100 \mathrm{~cm}^{2}$. The cone is placed upon the cylinder. Volume of the solid figure so formed is $500 \mathrm{~cm}^{3}$. Find the total height of the figure.
3) Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Q. 5 Solve the following questions. (Any one)

1) A building has 8 right cylindrical pillars whose cross sectional diameter is 1 m and whose height is 4.2 m . Find the expenditure to paint these pillars at the rate of Rs. 24 per m^{2}.
2) Find the coordinates of point P if P divides the line segment joining the points.
$A(-1,7)$ and $B(4,-3)$ in the ratio $2: 3$.
