PARISHRAM PUBLICATIONS

Mathematics Part - II Parishram Academy

Chapter: All

Note:-

Q.1 A) Solve Multiple choice questions. (4) $(\cos\theta + \sin\theta)^2 + (\cos\theta - \sin\theta)^2$ is equal to 1) a. -2 b. 0 c. 1 d. 2 2) A circle touches all sides of a parallelogram. So the parallelogram must be a b. rhombus a. rectangle c. square d. trapezium 3) Find the ratio of the volumes of a cylinder and a cone having equal radius and equal height. a.1:2 b. 2 : 1 c. 1:3 d. 3:1 4) If in two triangles ABC and PQR, $\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$, then a. △PQR~△CAB B. $\triangle PQR \sim \triangle ABC$ C. \triangle CBA~ \triangle PQR D. BCA~△PQR B) Solve the following questions. (4) Identify, with reason, if the following is Pythagorean triplet. 4, 9, 12 1) In the given figure, CB \perp AB, DA \perp AB. If BC = 4, AD = 8 then $\frac{A (\triangle ABC)}{A (\triangle ADB)}$ find. 2) Area of a sector of a circle of radius 15 cm is 30 cm². Find the length of the arc of the sector. 3) 4) Prove the following $\tan^4 \theta + \tan^2 \theta = \sec^4 \theta - \sec^2 \theta$

Q.2 A) Complete the following Activities. (Any two)

1) A side of an isosceles right angled triangle is x. Find its hypotenuse.

Proof : Draw seg GF.	
∠EFG = ∠FGH	(I)
∠EFG =	inscribed angle theorem (II)
∠FGH =	inscribed angle theorem (III)
m(arc EG) =	from (I), (II), (III).
chord EG \cong chord FH	

B) Solve the following questions. (Any four)

1) The diameter of a circle is 10 cm. Find the length of the arc, when the corresponding central angle is 144° ($\pi = 3.14$).

... ...

In the figure circles with centres C and D touch internally at point E. D lies on the inner circle. Chord EB of the outer circle intersects inner circle at point A. Prove that, seg EA \cong seg AB.

- 3) Draw a circle of radius 3.6. Draw a tangent to the circle at any point on it without using centre.
- 4) Find the length of altitude of an equilateral triangle having side 2a.

(8)

5) Find the centroids of the triangles whose vertices are given below. (3, -5), (4, 3), (11, -4)

Q.3 A) Complete the following activity. (Any one)

 In a △ABC, D and E are points on the sides AB and AC respectively such that DE || BC. If AD = 2.4 cm, AE = 3.2 cm, DE = 2 cm and BC = 5 cm, find the BD and CE.

2) In the circles with centres A and B touch each other at E. Line I is a common tangent which touches the circles at C and D respectively. Find the length of seg CD if the radii of the circles are 4 cm, 6 cm.

.... [Pythagoras Theorem] BF = _____

 $AB^{2} = _$ $10^{2} = AF^{2} + 2^{2}$ $AF^{2} = 96$ AF =

But, CD = AF ∴ CD = ____

2)

B) Solve the following questions. (Any two)

1) Prove the following. $\frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{\sin^2 A - \cos^2 A}$

In adjoining figure in $\triangle ABC$, point D is on side AC. If AC = 16, DC = 9 and BP \perp AC, then then find the following ratios.

- i. $\frac{A(\triangle ABD)}{A(\triangle ABC)}$ ii. $\frac{A(\triangle BDC)}{A(\triangle ABC)}$ iii. $\frac{A(\triangle ABD)}{A(\triangle BDC)}$
- **3)** Draw a circle with centre P and radius 3.4 cm. Take point Q at a distance 5.5 cm from the centre. Construct tangents to the circle from point Q.
- 4) In figure, chord MN and chord RS intersect at point D.

(1) If RD = 15, DS = 4, MD = 8 find DN (2) If RS = 18, MD = 9, DN = 8 find DS

Q.4 Solve the following questions. (Any two)

1) Find the equation of the line passing through the point of intersection of the line 4x + 3y + 2 = 0 and 6x + 5y + 6 = 0 and the point of intersection of the lines 4x - 3y - 17 = 0 and 2x + 3y + 5 = 0.

2)

(6)

(8)

A cylinder and a cone have equal bases. The height of the cylinder is 3 cm and the area of its base is 100 cm². The cone is placed upon the cylinder. Volume of the solid figure so formed is 500 cm³. Find the total height of the figure.

3) Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Q.5 Solve the following questions. (Any one)

- A building has 8 right cylindrical pillars whose cross sectional diameter is 1 m and whose height is 4.2 m. Find the expenditure to paint these pillars at the rate of Rs. 24 per m².
- 2) Find the coordinates of point P if P divides the line segment joining the points. A (-1,7) and B (4,-3) in the ratio 2 : 3.