

as 40, 20, 50 respectively. The correct mean is

b) 49

a) 48

Mathematics

Quick Notes Answer Key

d) 60

[C]

[List of probable questions for Board Exams - Question no. wise]

Q. 1 & 3 (From L: 1- Real Numbers) For 1 mark						
1)	Find the greatest numb a) 99921	er of 5 digits, that will gi b) 99931	eve us remainder of 5, where c) 99941	nen divided by 8 and 9 re d) 99951	spectively. [C]	
2)	For some integers p an a) 0 or 1	d 5, there exist unique in b) 0, 1 or 2	tegers q and r such that p c) 0, 1, 2 or 3	•	s of r are [D]	
3)	If the HCF of 55 and 99 is expressible in the form $55m - 99$, then the value of m is					
	a) 7	b) – 2	c) 2	d) 5	[C]	
4)	If two positive integers (a, b) is	s a and b are written as a	$=x^3y^2$ and $b=xy^3$, wh	nere x, y are prime numbe	ers, then HCF	
	a) xy	b) xy^2	c) $x^{3}y^{3}$	d) x^2y^2	[B]	
5)	Two natural numbers va) 120 and 54	whose difference is 66 and b) 90 and 24	d the least common mult c) 180 and 114	iple is 360, are: d) 130 and 64	[B]	
6)	4 Bells toll together at 9.00 am. They toll after 7, 8, 11 and 12 seconds respectively. How many times will they toll together again in the next 3 hours?					
	a) 3	b) 4	c) 5	d) 6	[C]	
7)	Which of the following	g rational numbers have a	a terminating decimal exp	pansion?		
	a) $\frac{125}{441}$	b) $\frac{77}{210}$	c) $\frac{15}{1600}$	d) $\frac{129}{2^2 \times 5^2 \times 7^2}$	[C]	
A forester wants to plant 66 apple trees, 88 banana trees & 110 mango trees in equal row (in terms of not Also be wants to make distinct rows of trees (only one type of trees in one row) The no of minimum required are						
	a) 2	b) 3	c) 10	d) 12	[D]	
9)	If p is a prime no & p of a) $2K^2$	livides K ² , then p divides b) K	s e) 3K ³	d) None of thes	[B]	
10)	LCM of 23×32 and 22	2×33 is			[C]	
10)	a) 23	b) 33	c) 2 ³ * 3 ³	d) 2 ² * 3 ²	[~]	
Q. 2	(From L : 14 - Statisti	ics):		Academy.	For 1 mark	
1)	Mean of 100 items is 49. It was discovered that three items which should have been 60, 70, 80 were wrongly read					

c) 50

2)	while computing mean a) evenly distributed or c) centred at the upper	ver all the classes	b) cen	t the frequencies are tred at the classmarks of tred at the lower limits		[B]
3)	In the formula $\overline{x} = a + h \left(\frac{\sum f_i u_i}{\sum f_i} \right)$, for finding the mean of grouped frequency distribution, $u_i = \frac{1}{\sum f_i} \int_{a_i}^{a_i} du_i du_i$					
	a) $\frac{x_i + a}{h}$	b) $h(x_i - a)$		c) $\frac{x_i - a}{h}$	$d) \frac{a - x_i}{h}$	[C]
4)	Mode is the value of that a) maximum frequency c) mean frequency		as:	b) minimum frequen d) middlest most fred	•	[A]
5)	Mode and mean of a da a) 12 k	ata are 12 k and 15 l b) 14 k	k. Median of	the data is c) 15 k	d) 16 k	[B]
6)	The abscissa of the poi curves of a grouped da a) mean		f the less then	c) mode	than type cumulativ	[B]
7)	The relationship between mean, median and mode for a moderately skewed distribution is a) mode = median - 2 mean b) mode = 3 median - 2 mean c) mode = 2 median - 3 mean d) mode = median - mean					[B]
8)	Which of the followin a) Mean	g can not be determ b) Median	nined graphica c) Mod	*	d) None of the	[A] these
9)	The mean of 10 numbers a) 20	ers is 15 and that of b) 15	another 20 nu c) 21	umbers is 24, then the i	mean of all 30 obse d) 24	rvations is [C]
10)	What should be the fre		n this case	ts		[C]
	Less than or equal to	50		100		
	Less than or equal to	40 20		1//		
	Less than or equal to	30 1.		/		
	Less than or equal to	20				
	Less than or equal to Less than or equal to	$\begin{bmatrix} 10 & & & 7 \\ 0 & & & 0 \end{bmatrix}$		///		
	Less than of equal to	0 0	-	7		
	a) 15	b) 26	c) 11		d) 30	
11)	If $\sum f_i = 11$, $\sum f_i x_i = 2p + 52$ and mean is 6 then the value of P is					[B]
	a) 5	b) 7	c) 22		d) 11	
Q. 3	(From L: 3 - Linear l	Equations in Two V	Variables) :			For 1 mark
1)	The pair of linear equations $2x + 3y = 5$ and $4x + 6y = 10$ is a) inconsistent b) consistent c) parallel d) none of the				d) none of these	[C]
2)	The pair of equations . a) parallel	x = a and $y = b$ graph b) intersecting at			d) intersecting	[D] at (a, b)
3)	The father's age is six t age. The present ages, a) 4 and 24	-		r are, respectively.	her will be four tim d) 3 and 24	es of his son's [C]

			[3]			
4)	The pair of equations a	ax + 2y = 7 and 3x + by =	16 represent parallel lines if		[D]	
	a) $a = b$	b) $3a = 2b$	c) $2a = 3b$	d) $ab = 6$		
5)	-	does the pair of equation $y + 8 = 0$ and $2x + 2y + 2$	given below has unique solution = 0	1?	[B]	
	a) $p \neq 3$	b) $p \neq 4$	c) $p \neq -4$	d) none of thes	e	
6)	If the lines given by $2x$	x + ky = 1 & 3x - 5y = 7	are parallel then the value of K is	1	[A]	
	a) $-10/3$	b) 10/3	c) -13	d) – 7		
Q. 5, 6	, 7 ((From L : 9 - Trigo	onometry) :			For 1 mark	
1)	If $\tan \theta = \frac{a}{b}$ then the va	alue of $\frac{a\sin\theta + b\cos\theta}{a\sin\theta - b\cos\theta}$	is			
	a) $\frac{a^2 - b^2}{a^2 + b^2}$	b) $\frac{a^2 + b^2}{a^2 - b^2}$	c) $\frac{a}{a^2 + b^2}$	$d) \frac{b}{a^2 + b^2}$		
		2				
2)	The value of $\sin^2 30^\circ$ –	$-\cos^2 30^\circ$ is				
	a) $-\frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{3}{2}$	d) $\frac{2}{3}$		
3)	If $3 \cot \theta = 2$, then the	value of tan θ				
2)			2	2		
	a) $\frac{2}{3}$	b) $\frac{3}{2}$	c) $\frac{3}{\sqrt{13}}$	d) $\frac{2}{\sqrt{13}}$		
	5	2	V13	VIS		
4)	If $\sin \theta = \sqrt{3} \cos \theta$, $0^{\circ} <$	θ < 90°, then θ is equal	to			
	a) 30°	b) 45°	c) 60°	d) 90°		
_,						
5)	If $\cos 9\alpha = \sin \alpha$ and $9\alpha < 90^{\circ}$, then the value of $\tan 5\alpha$ is					
	a) $\frac{1}{\sqrt{3}}$	b) /2	a) 1	d) 0		
	a) $\sqrt{3}$	b) $\sqrt{3}$	c) 1	u) 0		
6)	$\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta)$	$-\theta$) is equal to				
	a) 2 cos θ	b) 0	c) 2 sin θ	d) 1		
7)	The value of $\sin^2 5^\circ + \sin^2 5^\circ$	$\sin^2 10^\circ + \sin^2 15^\circ + + s$	in ² 90° is equal to			
,	a) 8	b) 8.5	c) 9	d) 9.5		
		9				
8)	The value of the expres	ssion [$\csc(75^{\circ} + \theta) - \sec(75^{\circ})$	$ec(15^{\circ} - \theta) - \tan(55^{\circ} + \theta) + \cot(35^{\circ})$	$^{\circ}-\theta)]$		
	-)	1.) 0	-) 1	3		
	a) -1	b) 0	c) 1	d) $\frac{3}{2}$		
	1					
9)	If cosec $A - \cot A = \frac{4}{5}$, then $\csc A =$				
	47	59	51	∆ 1		
	a) $\frac{47}{40}$	b) $\frac{59}{40}$	c) $\frac{51}{40}$	d) $\frac{41}{40}$		

10)	If $\sin \theta - \cos \theta = 0$, then the value of $(\sin^4 \theta + \cos^4 \theta)$ is					
	a) 1	b) $\frac{3}{4}$	c) $\frac{1}{2}$	d) $\frac{1}{4}$		
11)	$\frac{1+\cot^2 A}{1+\tan^2 A} =$					
	a) $\tan^2 A$	b) $\sec^2 A$	c) $\csc^2 A - 1$	d) $1 - \sin^2 A$		
12)	The value of cos0° co	os1° cos2°cos90° is	3		[C]	
	a) 1	b) -1	c) 0	d) $\sqrt[1]{\sqrt{2}}$		
13)	If $x \tan 45^\circ \cdot \sin 30^\circ = 0$	$\cos 30^\circ$. $\tan 30^\circ$ then x is	equal to		[D]	
	a) $\sqrt{3}$	b) $\frac{1}{2}$	c) $1/\sqrt{3}$	d) 1		
14)	$\sin 2B = 2 \sin B$ is tru	e then the value of B is			[D]	
	a) 90°	b) 60°	c) 30°	d) 0°		
15)	If A & (2A – 45°) ar	e acute angles such that	$\sin A = \cos(2A - 45^{\circ})$ then $\tan A$	is equal to	[C]	
	a) 0°	b) $\sqrt[1]{\sqrt{3}}$	c) 1	d) $\sqrt{3}$		
16)	If $x = a\cos 0^\circ$ & $y = a\cos 0^\circ$	$b\sin 0^\circ$ then $b^2x^2 + a^2y$	² =		[C]	
	a) ab	b) $b^2 + a^2$	c) a^2b^2	d) a^4b^4		
Q. 8, 9, 10 (From L: 7 - Co-ordinate Geometry)						
1)	A triangle with vertices $(4, 0)$, $(-1, -1)$ and $(3, 5)$ is a/an a) equilateral triangle b) right-angled triangle c) isosceles right-angled triangle d) none of these					
2)	The points $(-4, 0)$, $(4, 0)$ and $(0, 3)$ are the vertices of a/an a) right triangle b) isosceles triangle c) equilateral triangle d) scalene triangle					
3)	A circle drawn with origin as the centre passes through $\left(\frac{13}{2},0\right)$. The point which does not lie in the interior of					
	the circle is					
	a) $\left(-\frac{3}{4},1\right)$	b) $\left(2,\frac{7}{3}\right)$	c) $\left(5,-\frac{1}{2}\right)$	d) $\left(-6, \frac{5}{2}\right)$	[D]	
4)	If the distance betwee a) 4 only	on the points $(4, p)$ and $(b) \pm 4$	1, 0) is 5 units, then the value of p c) -4 only	o is d) 0	[B]	
5)	•	angle with vertices (0, 4		. –		
	a) 5	b) 12	c) 11	d) $7 + \sqrt{5}$	[B]	
6)	If P(1, 2), Q(4, 6), R(5	(5, 7) and $S(a, b)$ are the	vertices of a parallelogram PQRS	, then		

	a) $a = 2$, $b = 4$	b) $a = 3, b = 4$	c) $a = 2, b = 3$	d) $a = 3, b = 5$	[C]			
7)	The point P which quadrant	divides the line segment	joining the points $A(2,-5)$ and	and $B(5,2)$ in the ratio $2:3$	3 lies in the			
	a) I	b) II	c) III	d) IV	[D]			
8)	The area (in square	The area (in square units) of the triangle formed by the points $A(a, 0)$, $O(0, 0)$ and $B(0, b)$ is						
	a) <i>ab</i>	b) $\frac{1}{2}ab$	c) $\frac{1}{2}a^2b^2$	$d) \frac{1}{2}b^2$	[B]			
9)		· •	is 10 and which is at distance	•				
	a) 3	b) – 9	c) both a or b	c) none of these	[C]			
10)	The distance at point a) h	int (h, k) from x- axis is b) k	c) h	d) k	[D]			
	•				(D)			
11)	Distance of the poi	ant (4, 9) from x-axis is h b) 8	alf it's distance from y-axis, to c) 4	hen a = d) 6	[C]			
	, and the second	Í			()			
12)		diameter of circle are (2,	4) and $(-3,-1)$. The radius of	_				
	a) $\frac{5\sqrt{2}}{2}$	b) $5\sqrt{2}$	c) $3\sqrt{2}$	$d) \pm \frac{5\sqrt{2}}{2}$	[A]			
13)	What point on y-ay	xis is equidistant from A	(7.6) B(-3.4)					
13)	a) (0, 4)	b) (-4,0)	c) (3, 0)	d) (0, 3)	[C]			
	, () ,	, , , ,	, (, ,		. ,			
		~0~	0~0~0~0~0~					
		1	3 - 1					
				Zeodomu				

Academy

[5]