Central Board of Secondary Education

(CBSE)

Board Examination - (March)

Series : EPC20

Roll No.

Code No. - M -041

Candidates must write the code on the title page of the answer-book.

- Please check that this question paper contains 5 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

OF SEC

- Please check that this question paper contains 30 questions.
- Please write down the Serial Number of the question before attempting it.

FINAL EXAMINATION

MATHEMATICS

Time allowed : 3 hours

Maximum Marks : 80

General Instructions :

- (a) All the questions are compulsory.
- (b) The question paper consists of 40 questions divided into 4 sections A, B, C, and D.
- (c) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each.
 Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- (d) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (e) Use of calculators is not permitted.

Published by - Educare Plus Publication

Developed by - Resource Person of CBSE Board

	Section - A Q.Nos. 1 to 20 carry 1 mark each.				
	Q.No. 1 to 10 are multiple choice questions. Select the most appropriate answer from the given				
1)	Which of the following will have a terminating decimal expansion? (1	I)			
	(a) $\frac{77}{210}$ (b) $\frac{23}{30}$ (c) $\frac{125}{441}$ (d) $\frac{23}{8}$				
2)	Two concentric circles are of radii 5 cm and 3 cm. The length of the chord of larger circle (in cm) which touches the smaller circle is (1)				
	(a) 4 cm (b) 8 cm (c) 16 cm (d) $\sqrt{34}$ cm				
3)	In a frequency distribution, the mid value of a class is 10 and the width of the class is 6. The lower limit of				
	(a) 6 (b) 7 (c) 8 (d) 12	1)			
4)	The value of $(12)^{3x} + (18)^{3x}$, $x \in N$, ends with the digit. (a) 2 (b) 8 (c) 0 (d) cannot be determined (1)	l)			
5)	If $3x + 4y : x + 2y = 9 : 4$, then $3x + 5y : 3x - y$ is equal to (a) $4 : 1$ (b) $1 : 4$ (c) $7 : 1$ (d) $1 : 7$	l)			
6)	If in two triangles <i>DEF</i> and <i>PQR</i> , $SD = SQ$ and $SR = SE$, then which of the following is not true ?				
	(a) $\frac{EF}{PR} = \frac{DF}{PQ}$ (b) $\frac{DF}{PQ} = \frac{EF}{RP}$ (c) $\frac{DE}{QR} = \frac{DF}{PQ}$ (d) $\frac{EF}{RP} = \frac{DE}{QR}$ (1)	l)			
7)	If mABC is right angled at C, then the value of $\cos (A + B)$ is				
	(a) 0 (b) 1 me of conductive (c) $\frac{1}{2}$ (d) $\frac{\sqrt{3}}{2}$ (1)	I)			
8)	The value of $\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 90^\circ$ is equal to (a) 8 (b) 8.5 (c) 9 (d) 9.5				
9)	C is the mid-point of PQ, if P is $(4, x)$, C is $(y, -1)$ and Q is $(-2, 4)$, then x and y respectively are(1)(a) -6 and 1(b) -6 and 2(c) 6 and -1(d) 6 and -2	l)			
10)	The point on the X-axis which if equidistant from the points $A(-2, 3)$ and $B(5, 4)$ is(1)(a) $(0, 2)$ (b) $(2, 0)$ (c) $(3, 0)$ (d) $(-2, 0)$	l)			
11)	Q.No. 11 to 15 : Fill in the blanks. A cube of side 6 cm is cut into a number of cubes, each of side 2 cm. The number of cubes will be(1	l)			
12)	If one factor of $x^3 + 7kx^2 - 4kx + 12$ is $(x + 3)$, then the value of k is (1)	1)			
13)	In mPQR, right angled at Q , $PR + QR = 25$ cm and $PQ = 5$ cm. The value of tan P is (1)	1)			
14)	Three numbers in an AP have sum 24. Its middle term is (1)	1)			
15)	The probability of a non-leap year having 53 Mondays is (1	1)			
16)	Q.No. 16 to 20 : Answer the following. Can two numbers have 18 as their HCF and 380 as thier LCM ? Give reason.(1)	1)			

17)	If ratio of corresponding sides of two similar triangles is 5 : 6, then find ratio of their areas. (1)							
18)	The diameter of two circles with centres A and B are 16 cm and 30 cm respectively. If area of another circle with centre C is equal to the sum of areas of these two circles, then find the circumference of the circle with centre C . (1)							
19)	If the <i>n</i> th term of an A (a) $6n + 3$	P is $(2n + 1)$, then the s (b) 15	sum of its first three ter (c) 12	rms is (d) 21	(1)			
20)	$(x^2+1)^2 - x^2 = 0$ has (a) four real roots	(b) two real roots	(c) no real roots	(d) one real root	(1)			
	Section - B Q.Nos. 21 to 26 carry 2 marks each.							
21)	The sum of <i>n</i> terms of an A.P. is $3n^2 + 5n$. Find the A.P. Hence find its 15^{th} term. (2)							
22)	A circle is inscribed in a mABC, with sides AC , AB and BC as 8 cm, 10 cm and 12 cm respectively. Find the length of AD , BE and CF if AB , BC and AC touch the circle at D , E and F respectively. (2)							
23)	In the given figure, <i>G</i> is of the side <i>PR</i> of the the side <i>PR</i> of the the the side <i>PR</i> of the side <i>PR</i> of the the side <i>PR</i> of the side <i>PR</i> of the the side <i>PR</i> of the side <i>PR</i> of the the side <i>PR</i> of the side <i>PR</i> of the the side <i>PR</i> of the side <i>PR</i> of the the side <i>PR</i> of t	is the mid-point of the riangle PQR .	side PQ of mPQR and P H R OR such that $AE = \frac{2}{2}AB$.	$GH \mid \mid QR$. Prove that H is the If $AB = 6$ km and $AD = 3$, midpoint (2) km, then			
	find DE.	Home -	5	12	(2)			
24)	The angle of elevation of the top of a chimney from the foot of a tower is 60° and the angle of depression of the foot of the chimney from the top of the tower is 30°. If the height of tower is 40 m, find the height of smoke emitting chimney. According to pollution control norms, the minimum height of a smoke emitting chimney should be 100 m. What value is discussed in this problem? (2)							
25)	The king, queen and jack of clubs are removed from a deck of 52 playing cards and are well shuffled. One card is selected from the remaining cards. Find the probability of getting (a) a heart (b) a king (c) a club (d) the '10' of hearts.			ffled. One (c) a club (2)				
26)	A cubical block of side can have ? Find the su	e 7 cm is surmounted l rface area of the solid.	by a hemisphere. What	is the greatest diameter the h	emisphere (2)			
	Section - C Q.Nos. 27 to 34 carry 3 marks each							
27)	Find the HCF and LCM Show that any positive	M of 510 and 92 and ve odd integer is of the fo	erify that HCF × LCM OR orm $6q + 1$, $6q + 3$ or 6	= Product of two given numb $5q + 5$, where q is some intege	ers. (3) r.			
28)	If 7 th term of an A.P. is	$\frac{1}{9}$ and 9 th term is $\frac{1}{7}$,	find 63 rd term.		(3)			

L

29)	A two digit number is obtained by either multiplying the sum of digits by 8 and then subtracting 5 or by multiplying the difference of digits by 16 and adding 3. Find the number. (3)				
30)	If a and b are the zeroes of a quadratic polynomial such that $a + b = 0$ and $a - b = 8$. Find the quadratic polynomial having a and b as its zeroes. (3)				
31)	Find the co-ordinates of a point <i>P</i> on the line segment joining <i>A</i> (1, 2) and <i>B</i> (6, 7) such that $AP = \frac{2}{5}AB$. <i>OR</i> (3)				
	Find the ratio in which the line segment joining the points $A(3, -3)$ and $B(-2,7)$ is divided by <i>x</i> -axis. Also find the co-ordinates of point of division.				
32)	Given that $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ (3) Find the value of : (a) $\tan 75^{\circ}$ and (b) $\tan 90^{\circ}$ by taking suitable values of A and B.				
33)	An elastic belt is placed around the rim of a pulley of radius 5 cm. From one point <i>C</i> on the bert, the belt is pulled directly away from the centre <i>O</i> of the pulley until it is at <i>P</i> , 10 cm from the point <i>O</i> . Find the length of the belt that is still in contact with the pulley. Also find the shaded area. (Use $p = 3.14$ and $\sqrt{3} = 1.73$) (3)				
34)	The data regarding marks obtained by 48 students of a class in a class test is given below. Calculate the modal marks of students. $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
	OR (3) The following table gives the life time in days of 100 bulbs :				
	Life time in daysLess thanLess thanLess thanLess thanLess than50100150200250300Number of bulbs823558193100				
	Change the above distribution as frequency distribution. Section - D Q.Nos. 35 to 40 carry 4 marks each				
35)	Construct a mABC in which $AB = 4$ cm, $BC = 5$ cm and $AC = 6$ cm. Now, construct another triangle similar to mABC such that each of its sides is two-third of the corresponding sides of mABC. Also, prove your assertion. (4)				
36)	mPQR is right angled at Q. QX U PR, XY U RQ and XZ U PQ are drawn. Prove that $XZ^2 = PZ \ge ZQ$.				

[4]

	<i>OR</i> (4) If the area of two similar triangles are equal, prove that they are congruent.				
37)	Solve for $x: \frac{x+1}{x-1} + \frac{x-2}{x+2} = 4 - \frac{2x+3}{x-2}; x \neq 1, -2, 2$ (4)				
38)	A hemispherical bowl of internal diameter 36 cm contains a liquid. This liquid is filled into 72 cylindrical bottles of diameter 6 cm. Find the height of the each bottle, if 10% liquid is wasted in this transfer. (4)				
39)	The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 45°. If the tower is 30 m high, find the height of the building. OR (4) A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of hill as 30°. Find the distance of the hill from the ship and the height of the hill.				
40)	Find the median of the following data : (4) Class Interval $0 - 20$ $20 - 40$ $40 - 60$ $60 - 80$ $80 - 100$ $100 - 120$ $120 - 140$ Frequency 6 8 10 12 6 5 3				

